研究报告

赤拟谷盗来源天冬氨酸α-脱羧酶分子改造及催化合成β-丙氨酸工艺的建立

  • 王超 ,
  • 叶文琪 ,
  • 薛岚 ,
  • 刘中美 ,
  • 周哲敏
展开
  • (江南大学 生物工程学院,江苏 无锡,214122)

收稿日期: 2018-12-18

  网络出版日期: 2019-07-08

基金资助

国家重点研发计划政府间国际科技创新合作重点专项(2016YFE0127400);江南大学自主科研计划重点项目基金(JUSRP51713B);国家自然科学基金(31400078)

Modification of aspartate α-decarboxylase from Tribolium castaneum andits application in producing β-alanine

  • WANG Chao ,
  • YE Wenqi ,
  • XUE Lan ,
  • LIU Zhongmei ,
  • ZHOU Zhemin
Expand
  • Schoool of Biotechnology,Jiangnan University, Wuxi 214122, China

Received date: 2018-12-18

  Online published: 2019-07-08

摘要

L-天冬氨酸α-脱羧酶活性较低,稳定性较差,使得其在工业应用中受到限制。该研究旨在提高L-天冬氨酸α-脱羧酶的催化性能,促进生物法生产β-丙氨酸的工业化进程。依据嗜热蛋白酶的氨基酸内在进化趋势,对赤拟谷盗来源L-天冬氨酸α-脱羧酶进行分子改造,以期提高稳定性。实验共构建21个突变体,获得催化性能优良的突变体K221R,该突变体的比酶活较野生型提高20.3%;野生型经50 ℃处理30 min,残余酶活接近0,而突变体K221R的残余酶活为43%。建立了基因工程菌全细胞催化天冬氨酸生成β-丙氨酸的工艺,K221R菌株的产量达到134.72 g/L,摩尔转化率为94.52%,是迄今为止的最高产量。该研究构建的基因工程菌具有工业应用潜力,同时也为生物法制备β-丙氨酸提供理论与技术基础。

本文引用格式

王超 , 叶文琪 , 薛岚 , 刘中美 , 周哲敏 . 赤拟谷盗来源天冬氨酸α-脱羧酶分子改造及催化合成β-丙氨酸工艺的建立[J]. 食品与发酵工业, 2019 , 45(11) : 7 -13 . DOI: 10.13995/j.cnki.11-1802/ts.019670

Abstract

Low catalytic ability and poor stability limit industrial applications of L-aspartate α-decarboxylase. This study was therefore conducted to improve the catalytic activity of L-aspartate α-decarboxylase to promote biological production of β-alanine in industries. Based on evolutionary information of thermophilic bacteria, L-aspartate α-decarboxylase from Tribolium castaneum was molecularly modified to improve its enzyme stability. The mutant strain K221R was screened, as it had improved thermal stability and enzymatic activity. Compared with the wild type, the specific enzyme activity of K221R increased 20.3%. Moreover, after incubating the enzyme at 50 ℃ for 30 min, the residual activity of the wild type was 0, while K221R remained 43% activity. Furthermore, up to 134.72 g/L β-alanine was produced using K221R-expression whole cells, which was the highest production level achieved up-to-date, with 94.52% molar conversion rate. In conclusion, the engineered strain containing K221 variant has great potential for industrial production of β-alanine.

参考文献

[1] 罗积杏,薛建萍,沈寅初.β-氨基丙酸的合成与应用[J].氨基酸和生物资源,2005,27(1):52-55.
[2] 任怡,王彦青,舒宏,等.β-氨基丙酸的合成工艺研究[J].辽宁化工,2006,35(4):187-188.
[3] 楼坚.生物转化法生产β-丙氨酸的研究[D].杭州:浙江工业大学,2006.
[4] SHEN Yan, ZHAO Lianzhen, LI Youran,el al. Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum[J].Biotechnology Letters,2014,36(8):1 681-1 686.
[5] 高丽娟,裘娟萍.L-天冬氨酸脱羧酶研究进展[J].工业微生物,2007, 37(5):54-59.
[6] SONG C W, LEE J, KO Y S, et al.Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid[J].Metabolic Engineering,2015,30(3):121-129.
[7] WILLIAMSON J M,BROWN G M.Purification and properties of L-aspartate α-decarboxylase,an enzyme that catalyzes the formation of β-alanine in Escherichia coli[J].Journal of Biological Chemistry,1979,254(16):8 074-8 082.
[8] LEE B I,SUH S W. Crystal structure of the schiff base intermediate prior to decarboxylation in the catalytic cycle of aspartate α-decarboxylase[J].Journal of Molecular Biology,2004,340(1):1-7.
[9] GOPALAN G, CHOPRA S, RANGANATHAN A, et al. Crystal structure of uncleaved L-aspartate-α-decarboxylase from Mycobacterium tuberculosis[J].Proteins-structure Function & Bioinformatics,2010,65(4):796-802.
[10] CUI W, SHI Z, FANG Y, et al. Significance of Arg3,Arg54,and Tyr58 of L-aspartate α-decarboxylase from Corynebacterium glutamicum,in the process of self-cleavage[J].Biotechnology Letters,2014,36(1):121-126.
[11] 邓思颖,张君丽,蔡真,等.枯草芽胞杆菌L-天冬氨酸α-脱羧酶的酶学性质[J].生物工程学报,2015,31(8):1 184-1 193.
[12] 石增秀,崔文璟,周丽,等.谷氨酸棒杆菌L-天冬氨酸α-脱羧酶基因的克隆及重组酶性质研究[J].生物技术通报,2013(4):110-115.
[13] 陈夏林,李由然,顾正华,等.两种L-天冬氨酸α-脱羧酶的表达与酶学性质分析[J].微生物学通报,2017(10):2 337-2 344.
[14] KWON A R, LEE B I, HAN B W, et al.Crystallization and preliminary X-ray crystallographic analysis of aspartate L-decarboxylase from Helicobacter pylori[J].Acta Crystallographica,2002,58(5):861-863.
[15] SCHMITZBERGER F, KILKENNY M L, LOBLEY C M C, et al. Structural constraints on protein self-processing in L-aspartate-α-decarboxylase[J].Embo Journal,2014,22(23):6 193-6 204.
[16] 高宇.一釜双酶法转化富马酸制备β-丙氨酸催化体系的构建及工艺优化[D].无锡:江南大学,2017.
[17] LIU P,TORRENS-SPENCE M P, DING H, et al.Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases[J].Amino Acids,2013,44(2):391-404.
[18] ARAKANE Y, LOMAKIN J, BEEMAN R W, et al.Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum[J].Journal of Biological Chemistry,2009,284(24):16 584.
[19] MOUSSIAN B.Recent advances in understanding mechanisms of insect cuticle differentiation[J].Insect Biochemistry & Molecular Biology,2010,40(5):363-375.
[20] KRAMER K J,MORGAN T D,HOPKINS T L,et al.Catecholamines and β-alanine in the red flour beetle,Tribolium castaneum:roles in cuticle sclerotization and melanization[J].Insect Biochemistry,1984,14(3):293.
[21] DAI F,LIANG Q,CAO C,et al.Aspartate decarboxylase is required for a normal pupa pigmentation pattern in the silkworm,bombyx mori[J].Scientific Reports,2015,5:10 885.
[22] LIU P,DING H,CHRISTENSEN B M,et al.Cysteine sulfinic acid decarboxylase activity of Aedes aegypti aspartate L-decarboxylase: the structural basis of its substrate selectivity[J].Insect Biochemistry & Molecular Biology,2012,42(6):396-403.
[23] RICHARDSON G,DING H,ROCHELEAU T, et al. An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes[J].Molecular Biology Reports,2010,37(7):3 199-3 205.
[24] BORODINA I, KILDEGAARD K R, JENSEN N B, et al. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine[J].Metabolic Engineering,2015,27:57-64.
[25] BRADFORD M M. A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72(S1-2):248-254.
[26] ARGOS P, ROSSMANN M G, GRAU U M, et al.Thermal stability and protein structure[J].Evolution of Protein Structure & Function,1980,18(25):159-169.
[27] ZHANG X J, BAASE W A, MATTHEWS B W. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent,additive effects on both structure and stability[J].Protein Science,2010,1(6):761-776.
[28] MRABET N T, BROECK A V D, BRANDE I V D, et al. Arginine residues as stabilizing elements in proteins[J].Biochemistry,1992,31(8):2 239.
[29] 叶双双,周丽,周哲敏.定点突变提高苯丙氨酸羟化酶的热稳定性[J].生物工程学报,2016,32(9):1 243-1 254.
[30] JAKOB F, MARTINEZ R, MANDAWE J, et al. Surface charge engineering of a Bacillus gibsonii subtilisin protease[J].Applied Microbiology & Biotechnology,2013,97(15):6 793-6 802.
[31] 黄楠,朱龙宝,周丽,等.鱼腥藻苯丙氨酸脱氨酶的基因克隆、表达及最适反应pH改造[J].微生物学通报,2015,42(7):1 208-1 215.
[32] 王哲.重组大肠杆菌产腈水合酶发酵优化及烟酰胺生产工艺的建立[D].无锡:江南大学,2017.
文章导航

/