为了实现乌贼副产物的高值化利用,以虎斑乌贼生殖腺作为枯草芽孢杆菌的唯一发酵基质,以发酵液的蛋白酶活力和非蛋白氮含量为评价指标,通过单因素及正交试验确定最佳的发酵工艺。同时,对发酵产物的体外抗氧化活性及其氨基酸组成进行了研究。结果表明,最佳的发酵条件为:底物质量浓度为30 mg/mL,培养基的初始pH值6.0,发酵温度34 ℃,发酵时间60 h。在此条件下,发酵液的蛋白酶活力及非蛋白氮含量分别为(66.66±0.64)U/mL和(1.10±0.02) mg/mL。所得的发酵产物具有良好的体外抗氧化活性,其羟自由基清除能力、超氧阴离子自由基清除能力及亚铁离子螯合能力的IC50值分别为19.40、8.90和1.75 mg/mL。氨基酸组成分析表明,发酵产物中赖氨酸含量最高,其抗氧化氨基酸和疏水性氨基酸的含量分别占总氨基酸含量的63.3%和39.1%,具有很好的抗氧化潜力,可作为天然抗氧化剂或功能性食品添加剂应用于食品加工中。
In order to realize high value utilization of cuttlefish by-products, the gonad of Sepia pharaonis was used as a sole substrate to ferment Bacillus subtilis. Using protease activity and non-protein nitrogen content of the fermentation broth as evaluation indexes, the fermentation process was optimized. Besides, the in vitro antioxidant activities and amino acid composition of the fermentation products were studied. The results showed that the optimal fermentation condition was as follows: 30 mg/mL substrate, fermented at 34 ℃ for 60 h, with an initial pH of 6.0. Under this condition, the protease activity and non-protein nitrogen content of the fermentation broth were (66.66±0.64) U/mL and (1.10±0.02) mg/mL, respectively. Moreover, the fermentation products exhibited good antioxidant activities in vitro, as their IC50 values of scavenging hydroxyl radicals, superoxide anion radicals and chelating ferrous ions were 19.40 mg/mL, 8.90 mg/mL, and 1.75 mg/mL, respectively. Furthermore, the amino acid composition analysis showed that lysine content was the highest in the fermentation product, and antioxidant and hydrophobic amino acids accounted for 63.3% and 39.1% of total amino acids respectively. Therefore, gonad peptides of cuttlefish can be used as natural antioxidants or functional food additives during food processing.
[1] 董正之. 世界大洋经济头足类生物学[M]. 济南:山东科学技术出版社, 1991: 214-216.
[2] 陈新军, 刘必林,王尧耕. 世界头足类[M]. 北京:海洋出版社, 2009: 450-451.
[3] 陈道海, 郑亚龙. 虎斑乌贼(Sepia pharaonis)繁殖行为谱分析[J]. 海洋与湖沼, 2013, 44(4): 931-936.
[4] YIN Shangjun, ZHANG Linmeng, ZHANG Lili, et al. Metabolic responses and arginine kinase expression of juvenile cuttlefish (Sepia pharaonis) under salinity stress[J]. International Journal of Biological Macromolecules, 2018, 113: 881-888.
[5] 周爽男, 吕腾腾,陈奇成,等. 光照强度与光周期对虎斑乌贼胚胎发育的影响[J]. 应用生态学报, 2018, 29(6): 2 059-2 067.
[6] 陈道海, 王雁,梁汉青,等. 虎斑乌贼(Sepia pharaonis)胚胎发育及孵化历期观察[J]. 海洋与湖沼, 2012, 43(2): 394-400.
[7] 蒋霞敏, 罗江,彭瑞冰,等. 水泥池养殖条件下虎斑乌贼的生长特性[J]. 宁波大学学报(理工版), 2014, 27(2): 1-6.
[8] 阮鹏, 蒋霞敏,韩庆喜,等. 社会等级因素对虎斑乌贼生长、存活及相关酶活的影响[J]. 水产学报, 2016, 40(12):1 897-1 905.
[9] 孙玉林, 罗琴琴,冯梓欣,等. 响应面法优化虎斑乌贼内脏多糖提取工艺及抗氧化活性、吸湿保湿性能研究[J]. 食品工业科技, 2018, 39(10): 182-189.
[10] SHUSHIZADEH M R, POUR E M, ZARE A, et al. Persian gulf β-chitin extraction from Sepia pharaonis sp. cuttlebone and preparation of its derivatives[J]. Bioactive Carbohydrates and Dietary Fibre, 2015, 6(2): 133-142.
[11] KRISHNAMOORTHI J, RAMASAMY P, SHANMUGAM V, et al. Isolation and partial characterization of collagen from outer skin of Sepia pharaonis (Ehrenberg, 1831) from Puducherry coast[J]. Biochemistry and Biophysics Reports, 2017, 10: 39-45.
[12] 戴宏杰, 孙玉林,冯梓欣,等. 雌性虎斑乌贼缠卵腺营养成分分析与评价[J]. 食品科学, 2016, 37(14): 97-103.
[13] CHAI T T, LAW Y C, WONG F C, et al. Enzyme-assisted discovery of antioxidant peptides from edible marine invertebrates: a review[J]. Marine Drugs, 2017, 15(2): 42.
[14] 刘金龙. 鱼蛋白多肽的制备及其在农业生产中的应用[D]. 泰安:山东农业大学, 2017: 20-44.
[15] 马明, 杜金华. 枯草芽孢杆菌酶在工业生产中的应用[J]. 山东科学, 2006, 19(3):35-38.
[16] LASSOUED I, MORA L, BARKIA A, et al. Bioactive peptides identified in thornback ray skin's gelatin hydrolysates by proteases from Bacillus subtilis and Bacillus amyloliquefaciens[J]. Journal of Proteomics, 2015, 128: 8-17.
[17] 江敏, 胡小军,王标诗,等. 发酵法制备马氏珠母贝抗氧化多肽工艺及清除自由基的研究[J]. 食品与发酵科技, 2017, 53(4): 32-38.
[18] 钟群. 雪峰乌骨鸡活性肽制备及抗氧化功能测定[D]. 广州:华南农业大学, 2016: 23-24.
[19] 吴燕燕, 田倩,尚军,等. 合浦珠母贝抗氧化肽的性质及应用研究[J]. 食品工业科技, 2011, 32(11): 123-126.
[20] SILA A, SAYARI N, BALTI R, et al. Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis[J]. Food Chemistry, 2014, 148: 445-452.
[21] ARUOMA O I. Free radicals, oxidative stress, and antioxidants in human health and disease[J]. Journal of the American Oil Chemists Society, 1998, 75(2): 199-212.
[22] 龚志强, 王朋,赵玉谨,等. 金枪鱼碎肉水解液喷雾干燥工艺优化及抗氧化活性研究[J]. 安徽农业科学, 2015, 43(4): 297-299.
[23] FRIDOVICH I. Superoxide anion radical (O-2·), superoxide dismutases, and related matters[J]. Journal of Biological Chemistry, 1997, 272(30): 18 515-18 517.
[24] 杨涛, 万端极,吴正奇,等. 海参内脏制备海参多肽工艺优化及其抗氧化测定[J]. 食品科技, 2014, 39(3): 218-222.
[25] 胡小军, 江敏,莫秋远,等. 鱿鱼肌肉蛋白肽的制备工艺优化及其抗氧化活性[J]. 食品工业科技, 2017, 38(5):191-195.
[26] STOHS S J, BAGCHI D. Oxidative mechanisms in the toxicity of metal ions[J]. Free Radical Biology and Medicine, 1995, 18(2): 321-336.
[27] ZHOU Dayong, QIN Lei, ZHU Beiwei, et al. Optimisation of hydrolysis of purple sea urchin (Strongylocentrotus nudus) gonad by response surface methodology and evaluation of in vitro antioxidant activity of the hydrolysate[J]. Journal of the Science of Food and Agriculture, 2012, 92(8): 1 694-1 701.
[28] 郑杰, 于笛,陈冲,等. 海蜇生殖腺酶解物抗氧化活性的研究[J]. 水产科学, 2014, 33(2): 81-86.
[29] JE J Y, PARK S Y, HWANG J Y, et al. Amino acid composition and in vitro antioxidant and cytoprotective activity of abalone viscera hydrolysate[J]. Journal of Functional Foods, 2015, 16: 94-103.
[30] UDENIGWE C C, ALUKO R E. Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates[J]. International Journal of Molecular Sciences, 2011, 12(5): 3 148-3 161.