生产与科研应用

木薯淀粉水凝胶负载姜黄素及缓释性能研究

  • 高凤苑 ,
  • 关欣 ,
  • 韩良亮 ,
  • 覃秀英 ,
  • 韦东来 ,
  • 蓝平 ,
  • 廖安平
展开
  • (广西民族大学 化学化工学院,广西多糖材料及改性重点实验室,广西高校化学与生物转化过程新技术重点实验室,广西 南宁,530006)

收稿日期: 2018-10-07

  网络出版日期: 2019-07-08

基金资助

广西生物多糖分离纯化及改性研究平台建设(桂科ZY18076005);广西大学生创新创业训练计划项目(201710608176);广西民族大学研究生教育创新计划项目重点项目(gxun-chxzs2017127)

Curcumin loaded tapioca starch hydrogel and its sustained release

  • GAO Fengyuan ,
  • GUAN Xin ,
  • HAN Liangliang ,
  • YAN Xiuying ,
  • WEI Donglai ,
  • LAN Ping ,
  • LIAO Anping
Expand
  • (Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes,Guangxi Key Laboratory of Polysaccharide Materials and Modification, College of Chemistry and Chemical Engineering,Guangxi University for Nationalities, Nanning 530006, China)

Received date: 2018-10-07

  Online published: 2019-07-08

摘要

为提高木薯淀粉应用价值,以木薯淀粉为原料,丙烯酰胺为单体,过硫酸钾为引发剂,N,N-亚甲基双丙烯酰胺为交联剂制备具有良好机械性能、可用作药物载体的木薯淀粉水凝胶。通过傅里叶红外光谱、核磁共振、X-射线衍射等分析测试手段对其进行表征。成功制备木薯淀粉水凝胶,且机械性能良好。以制得的水凝胶为载体,探究了水凝胶负载姜黄素的载药性能及缓释性能。结果表明:载药性能良好,最佳载药条件为载药时间0.5 h,乙醇体积分数20%,温度35 ℃,药液初始浓度100 μg/mL,载药量可达到100 mg/g。纯姜黄素与负载于水凝胶中的姜黄素作对照,纯姜黄素突释明显,水凝胶中姜黄素释放缓慢,72 h后累积释药率达到80%左右,表明水凝胶作为载体具有药物缓释的作用。

本文引用格式

高凤苑 , 关欣 , 韩良亮 , 覃秀英 , 韦东来 , 蓝平 , 廖安平 . 木薯淀粉水凝胶负载姜黄素及缓释性能研究[J]. 食品与发酵工业, 2019 , 45(11) : 204 -210 . DOI: 10.13995/j.cnki.11-1802/ts.018976

Abstract

In order to improve the application value of tapioca starch, a tapioca starch hydrogel was prepared by using cassava starch as raw material, acrylamide as a monomer, potassium persulfate as an initiator, and N,N-methylenebisacrylamide as a cross-linking agent. It was characterized by fourier transform infrared spectroscopy, nuclear magnetic resonance, X-ray diffraction and other analytical methods. The results showed that the tapioca starch hydrogel had been successfully prepared and had good mechanical properties. Moreover, by using curcumin as a drug, it was found that the drug-loading performance of the hydrogel was good, and the optimal drug loading condition was as follows: at 35 ℃, loaded 100 μg/mL initial drug solution for 0.5 h with 20% ethanol. Under this condition, the drug loading amount could reach to 100 mg/g. By comparing pure curcumin and curcumin loaded in the hydrogel, the pure curcumin showed significant sudden release, while the curcumin in the hydrogel was released slowly, and the cumulative release rate reached about 80% after 72 h, indicating that the hydrogel could achieve sustained release of drugs.

参考文献

[1] 王彬辉,高晓宇,章文红,等.姜黄素抗肿瘤作用新剂型及其衍生物研究新进展[J].中国中医药科技,2015,22(2):232-235.
[2] SZYMUSIAK M, HU X, LEON P P A, et al. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin[J].International Journal of Pharmaceutics, 2016, 511(1):415-423.
[3] 李帅,宋少婷,张振显,等.姜黄素缓释载体研究进展[J].上海中医药杂志,2018,52(7):102-104.
[4] 薛博,李新华,王虹玲.阴离子淀粉微球吸附姜黄素工艺的研究[J].安徽农业科学,2015,43(12):230-232;255.
[5] NAMDARIM,EATEMADIA.Cardioprotective effects of curcumin-loaded magnetic hydrogel nanocomposite(nanocur-cumin) against doxorubicin-induced cardiac toxicity in rat cardiomyocyte cell lines[J]. Artifi Cel Nanomed Biotech, 2016,45(4):731-739.
[6] MOMINM,KURHADE S,KHANEKAR P, et al. Novel biodegradable hydrogel sponge containing curcumin and honey for wound healing[J].J Wound Care,2016,25(6):364-372.
[7] 蓝平,何日梅,封余贤,等.木薯淀粉磁性微球的结构表征及其对溶菌酶的吸附性能[J].化工进展,2016,35(1):189-196.
[8] 高凤苑,韦东来,张鑫,等.木薯淀粉水凝胶的制备及表征[J].食品工业科技,2019,40(6):49-53;61.
[9] YANG C, WANG Z, OU C, et al. A supramolecular hydrogelator of curcumin[J]. Chemistry Commun. 2014, 50(66):9 413-9 415.
[10] NAMAZI H, DADKHAH A. Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids[J]. Carbohydrate Polymers, 2010, 79(3):731-737.
[11] BAI C, ZHANG S, HUANG L, et al. Starch-based hydrogel loading with carbendazim for controlled-release and water absorption[J]. Carbohydrate Polymers, 2015, 125(12):376-383.
[12] SOLEYMAN R, POURJAVADI A, MONFARED A, et al. Novel salep-based chelating hydrogel for heavy metal removal from aqueous solutions[J]. Polymers for Advanced Technologies, 2016, 27(8):999-1 005.
[13] 薛丹,杨倩,解桥娟,等.基于丙烯酰胺的三元疏水缔合聚合物的合成[J].应用化工,2018,47(2):312-314;318.
[14] WANG N, HAN Y, LIU Y, et al. High-strength hydrogel as a reusable adsorbent of copper ions[J]. Journal of Hazardous Materials, 2012, 213 (7):258-264.
[15] 王现功. 高强度多重交联网络水凝胶的制备与性能[D].济南,山东大学,2018.
[16] 胡艳红,陈胜,黄秀榕,等.羧甲基壳聚糖载姜黄素缓释药膜的制备及其体外缓释动力学研究[J].齐齐哈尔医学院学报,2016,37(28):3 512-3 514.
[17] SAIKIA C, DAS M K, RAMTEKE A, et al. Controlled release of curcumin from thiolated starch-coated iron oxide magnetic nanoparticles: An in vitro evaluation[J]. International Journal of Polymeric Materials & Polymeric Biomaterials, 2016, 66(7):349-358.
[18] 刘敏. 载带姜黄素的果胶复合凝胶球性能研究[D].天津,天津科技大学,2014.
[19] 秦静雯,傅佳佳,万玉芹,等.CA担载姜黄素缓释体系的制备及其缓释动力学[J].材料科学与工程学报,2013,31(6):881-885.
[20] LIU J, CHEN Z, WANG J, et al. Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing[J]. Acs Applied Materials & Interfaces, 2018, 10(19):25-36.
[21] 林媚,林晨,刘洋.姜黄素微球的制备及缓释性能研究[J].福建医科大学学报,2010,44(3):178-181.
[22] AYTAC Z, UYAR T. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin[J]. International Journal of Pharmaceutics,2017, 518(1-2):177-184.
[23] 刘亚,王雨,陈莹莹,等.MOF-5吸附姜黄素及在胃肠中的消化研究[J].食品科学技术学报,2017,35(5):46-52.
[24] 吴丽莎,喻红英,曾庆冰.姜黄素mPEG_(114)-PCL_(36)纳米胶束的制备及体外释药考察[J].中国实验方剂学杂志,2013,19(12):53-58.
[25] AMIN S, RAJABNEZHAD S, KOHLI K. Hydrogels as potential drμg delivery systems[J]. Sci Res Essays,2009, 4(2):1 175-1 183.
文章导航

/