[1] ZAFAR M I, GAO F. 4-Hydroxyisoleucine: A potential new treatment for type 2 diabetes mellitus[J]. BioDrugs, 2016, 30(4):255-262.
[2] AHMAD A, ALGHAMDI S S, MAHMOOD K, et al. Fenugreek a multipurpose crop: Potentialities and improvements[J]. Saudi Journal of Biological Sciences, 2016, 23(2): 300-310.
[3] HAERI M R, LIMAKI H K, WHITE C J B, et al. Non-insulin dependent anti-diabetic activity of (2S, 3R, 4S)-4-hydroxyisoleucine of fenugreek (Trigonella foenum-graecum) in streptozotocin-induced type I diabetic rats[J]. Phytomedicine, 2012, 19(7): 571-574.
[4] JAISWAL N, MAURYA C K, VENKATESWARLU K, et al. 4-Hydroxyisoleucine stimulates glucose uptake by increasing surface GLUT4 level in skeletal muscle cells via phosphatidylinositol-3-kinase-dependent pathway[J]. European Journal of Nutrition, 2012, 51(7): 893-898.
[5] MAURYA C K, SINGH R, JAISWAL N, et al. 4-Hydroxyisoleucine ameliorates fatty acid-induced insulin resistance and inflammatory response in skeletal muscle cells[J]. Molecular and Cellular Endocrinology, 2014, 395(1-2): 51-60.
[6] FULLER S, STEPHENS J M. Diosgenin, 4-hydroxyisoleucine, and fiber from Fenugreek: Mechanisms of actions and potential effects on metabolic syndrome[J]. Advances in Nutrition, 2015, 6(2): 189-197.
[7] FOWDEN L, PRATT H M, SMITH A. 4-Hydroxyisoleucine from seed of Trigonella foenum-graecum[J]. Phytochemistry, 1973, 12(7): 1 707-1 711.
[8] AOUADI K, JEANNEAU E, MSADDEK M, et al. 1, 3-dipolar cycloaddition of a chiral nitrone to (E)-1, 4-dichloro-2-butene: A new efficient synthesis of (2S, 3S, 4R)-4-hydroxyisoleucine[J]. Tetrahedron Letters, 2012, 53 (23): 2 817-2 821.
[9] KODERA T, SMIRNOV S V, SAMSONOVA N N, et al. A novel L-isoleucine hydroxylating enzyme, L-isoleucine dioxygenase from Bacillus thuringiensis, produces (2S, 3R, 4S)-4-hydroxyisoleucine[J]. Biochemical and Biophysical Research Communication, 2009, 390(3): 506-510.
[10] SHI X, MIYAKAWA T, NAKAMURA A, et al. Engineering a short-chain dehydrogenase/reductase for the stereoselective production of (2S, 3R, 4S)-4-hydroxyisoleucine with three asymmetric centers[J]. Scientific Reports, 2017, 7(1): 1-13.
[11] SMIRNOV S V, KODERA T, SAMSONOVA N N, et al. Metabolic engineering of Escherichia coli to produce (2S, 3R, 4S)-4-hydroxyisoleucine[J]. Applied Microbiology and Biotechnology, 2010, 88(3): 719-726.
[12] OGAWA J, KODERA T, SMIRNOV S V. A novel L-isoleucine metabolism in Bacillus thuringiensis generating (2S, 3R, 4S)-4-hydroxyisoleucine, a potential insulinotropic and anti-obesity amino acid[J]. Applied Microbiology and Biotechnology, 2011, 89(6): 1 929-1 938.
[13] KIVERO A D, NOVIKOVA A E, SMIRNOV S V. Modification of E. coli central metabolism to optimize the biotransformation of L-isoleucine into 4-hydroxyisoleucine by enzymatic hydroxylation[J]. Applied Biochemistry and Microbiology, 2012, 48(7): 639-644.
[14] ZHANG C, LI Y, MA J, et al. High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering[J]. Metabolic Engineering, 2018, 49: 287-298.
[15] SHI F, FANG H, NIU T, et al. Overexpression of ppc and lysC to improve the production of 4-hydroxyisoleucine and its precursor L-isoleucine in recombinant Corynebacterium glutamicum ssp. lactofermentum[J]. Enzyme and Microbial Technology, 2016, 87: 79-85.
[16] SHI F, ZHANG M, LI Y, et al. Sufficient NADPH supply and pknG deletion improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum[J]. Enzyme and Microbial Technology, 2018, 115: 1-8.
[17] DIAO J J, LI X R, PEI G S, et al. Comparative metabolomic analysis of Crypthecodinium cohnii in response to different dissolved oxygen levels during docosahexaenoic acid fermentation[J]. Biochemical and Biophysical Research Communications, 2018, 499(4): 941-947.
[18] WEI Z H, CHEN N, LI Y J, et al. Glucose fed-batch integrated dissolved oxygen control strategy enhanced polysaccharide, total triterpenoids and inotodiol production in fermentation of a newly isolated Inonotus obliquus strain[J]. Process Biochemistry, 2018, 66: 1-6.
[19] ZHANG X L, CHEN J X, WU D, et al. Economical lipid production from Trichosporon oleaginosus via dissolved oxygen adjustment and crude glycerol addition[J]. Bioresource Technology, 2019, 273: 288-296.
[20] 白亚磊,徐庆阳,谢希贤,等. 溶氧控制对黄色短杆菌YILW合成L-异亮氨酸的影响[J]. 天津科技大学学报,2011,26 (1): 5-9;30.
[21] 张成林,刘远,薛宁,等. 苏云金芽孢杆菌重组L-异亮氨酸羟化酶的酶学性质及其在4-羟基异亮氨酸合成中的应用[J]. 微生物学报,2014,54(8): 889-896.
[22] ZHANG C, MA J, LI Z, et al. A strategy for L-isoleucine dioxygenase screening and 4-hydroxyisoleucine production by resting cells[J]. Bioengineered, 2017, 9 (1): 72-79.
[23] 张成林,龙辉,温冰,等. 双底物指数流加和双阶段溶氧控制对谷氨酸棒状杆菌生产L-异亮氨酸的影响[J]. 食品与发酵工业,2014,40(4): 1-6.
[24] LI Y, SUN L, FENG J, et al. Efficient production of α-ketoglutarate in the gdh deleted Corynebacterium glutamicum by novel double-phase pH and biotin control strategy[J]. Bioprocess and Biosystems Engineering, 2016, 39(6):967-976.
[25] HAUSINGER R P. Fe II/alpha-ketoglutarate-dependent hydroxylases and related enzymes[J]. Critical Reviews in Biochemistry and Molecular Biology, 2004, 39(1): 21-68.
[26] SHI F, NIU T, FANG H. 4-Hydroxyisoleucine production of recombinant Corynebacterium glutamicum ssp. lactofermentum under optimal corn steep liquor limitation[J]. Applied Microbiology and Biotechnology, 2015, 99(9):3 851-3 863.