研究报告

两阶段溶氧控制及FeSO4添加对谷氨酸棒杆菌合成4-羟基异亮氨酸的影响

  • 孟静 ,
  • 芦楠 ,
  • 朱福周 ,
  • 董解荣 ,
  • 王子申 ,
  • 陈宁 ,
  • 张成林
展开
  • 1.天津科技大学 生物工程学院,天津,300457;
    2.菱花集团有限公司,山东 济宁,272073
硕士研究生(张成林副教授为通讯作者,E-mail:zcl@tust.edu.cn)。

收稿日期: 2019-01-10

  修回日期: 2019-03-27

  网络出版日期: 2019-07-16

基金资助

国家自然科学基金项目(31300069, 31770053);中国博士后科学基金项目(2017M611170, 2018T110662);天津市科技计划项目(17YFZCSY01050);天津科技大学青年教师创新基金项目(2016LG07)

Effects of two-stage DO control and FeSO4 addition on 4-hydroxyisoleucine production by Corynebacterium glutamicum

  • MENG Jing ,
  • LU Nan ,
  • ZHU Fuzhou ,
  • DONG Jierong ,
  • WANG Zishen ,
  • CHEN Ning ,
  • ZHANG Chenglin
Expand
  • 1. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
    2. Linghua Group Ltd, Jining 272073, China

Received date: 2019-01-10

  Revised date: 2019-03-27

  Online published: 2019-07-16

摘要

优化4-羟基异亮氨酸发酵过程中溶氧水平及FeSO4添加量,以提高其发酵水平。结合菌株Corynebacterium glutamicum HIL18及4-羟基异亮氨酸合成特点,首先考察不同溶氧水平及两阶段溶氧控制对4-羟基异亮氨酸发酵的影响。然后考察FeSO4添加对其发酵的作用。20%溶氧有利于4-羟基异亮氨酸的合成。利用两阶段溶氧控制工艺(0~20 h、20%溶氧;20~64 h、30%溶氧)经64 h发酵,4-羟基异亮氨酸产量达到38.7 g/L,较未使用该工艺提高11.2%。采用两阶段FeSO4添加策略(初始浓度为65 μmol/L、20 h添加30 μmol/L),4-羟基异亮氨酸的产量达到43.4 g/L。采用优化后的工艺使得4-羟基异亮氨酸产量较优化前提高27.3%。获得了4-羟基异亮氨酸发酵过程中两阶段溶氧控制及FeSO4添加工艺。该结果为4-羟基异亮氨酸的高效发酵合成提供参考。

本文引用格式

孟静 , 芦楠 , 朱福周 , 董解荣 , 王子申 , 陈宁 , 张成林 . 两阶段溶氧控制及FeSO4添加对谷氨酸棒杆菌合成4-羟基异亮氨酸的影响[J]. 食品与发酵工业, 2019 , 45(12) : 1 -6 . DOI: 10.13995/j.cnki.11-1802/ts.019910

Abstract

Effects of DO levels and two-stage DO control strategy on 4-hydroxyisoleucine production were investigated, followed by analyzing the effects of two-stage FeSO4 addition. The results indicated that 20% DO was suitable for 4-hydroxyisoleucine synthesis during one-stage DO control process. During two-stage DO control process (20% DO for 0-20 h and 30% for 20-64 h), 38.7 g/L 4-hydroxyisoleucine was obtained, which was 11.2% higher than that at 20% DO. By using two-stage FeSO4 addition strategy (65 μmol/L for primary concentration and 30 μmol/L FeSO4 added at 20 h), the production of 4-hydroxyisoleucine increased to 43.4 g/L, which was 27.3% higher than the control. In conclusion, the strategy of two-stage DO control and FeSO4 addition provides a reference for highly efficient production of 4-hydroxyisoleucine.

参考文献

[1] ZAFAR M I, GAO F. 4-Hydroxyisoleucine: A potential new treatment for type 2 diabetes mellitus[J]. BioDrugs, 2016, 30(4):255-262.
[2] AHMAD A, ALGHAMDI S S, MAHMOOD K, et al. Fenugreek a multipurpose crop: Potentialities and improvements[J]. Saudi Journal of Biological Sciences, 2016, 23(2): 300-310.
[3] HAERI M R, LIMAKI H K, WHITE C J B, et al. Non-insulin dependent anti-diabetic activity of (2S, 3R, 4S)-4-hydroxyisoleucine of fenugreek (Trigonella foenum-graecum) in streptozotocin-induced type I diabetic rats[J]. Phytomedicine, 2012, 19(7): 571-574.
[4] JAISWAL N, MAURYA C K, VENKATESWARLU K, et al. 4-Hydroxyisoleucine stimulates glucose uptake by increasing surface GLUT4 level in skeletal muscle cells via phosphatidylinositol-3-kinase-dependent pathway[J]. European Journal of Nutrition, 2012, 51(7): 893-898.
[5] MAURYA C K, SINGH R, JAISWAL N, et al. 4-Hydroxyisoleucine ameliorates fatty acid-induced insulin resistance and inflammatory response in skeletal muscle cells[J]. Molecular and Cellular Endocrinology, 2014, 395(1-2): 51-60.
[6] FULLER S, STEPHENS J M. Diosgenin, 4-hydroxyisoleucine, and fiber from Fenugreek: Mechanisms of actions and potential effects on metabolic syndrome[J]. Advances in Nutrition, 2015, 6(2): 189-197.
[7] FOWDEN L, PRATT H M, SMITH A. 4-Hydroxyisoleucine from seed of Trigonella foenum-graecum[J]. Phytochemistry, 1973, 12(7): 1 707-1 711.
[8] AOUADI K, JEANNEAU E, MSADDEK M, et al. 1, 3-dipolar cycloaddition of a chiral nitrone to (E)-1, 4-dichloro-2-butene: A new efficient synthesis of (2S, 3S, 4R)-4-hydroxyisoleucine[J]. Tetrahedron Letters, 2012, 53 (23): 2 817-2 821.
[9] KODERA T, SMIRNOV S V, SAMSONOVA N N, et al. A novel L-isoleucine hydroxylating enzyme, L-isoleucine dioxygenase from Bacillus thuringiensis, produces (2S, 3R, 4S)-4-hydroxyisoleucine[J]. Biochemical and Biophysical Research Communication, 2009, 390(3): 506-510.
[10] SHI X, MIYAKAWA T, NAKAMURA A, et al. Engineering a short-chain dehydrogenase/reductase for the stereoselective production of (2S, 3R, 4S)-4-hydroxyisoleucine with three asymmetric centers[J]. Scientific Reports, 2017, 7(1): 1-13.
[11] SMIRNOV S V, KODERA T, SAMSONOVA N N, et al. Metabolic engineering of Escherichia coli to produce (2S, 3R, 4S)-4-hydroxyisoleucine[J]. Applied Microbiology and Biotechnology, 2010, 88(3): 719-726.
[12] OGAWA J, KODERA T, SMIRNOV S V. A novel L-isoleucine metabolism in Bacillus thuringiensis generating (2S, 3R, 4S)-4-hydroxyisoleucine, a potential insulinotropic and anti-obesity amino acid[J]. Applied Microbiology and Biotechnology, 2011, 89(6): 1 929-1 938.
[13] KIVERO A D, NOVIKOVA A E, SMIRNOV S V. Modification of E. coli central metabolism to optimize the biotransformation of L-isoleucine into 4-hydroxyisoleucine by enzymatic hydroxylation[J]. Applied Biochemistry and Microbiology, 2012, 48(7): 639-644.
[14] ZHANG C, LI Y, MA J, et al. High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering[J]. Metabolic Engineering, 2018, 49: 287-298.
[15] SHI F, FANG H, NIU T, et al. Overexpression of ppc and lysC to improve the production of 4-hydroxyisoleucine and its precursor L-isoleucine in recombinant Corynebacterium glutamicum ssp. lactofermentum[J]. Enzyme and Microbial Technology, 2016, 87: 79-85.
[16] SHI F, ZHANG M, LI Y, et al. Sufficient NADPH supply and pknG deletion improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum[J]. Enzyme and Microbial Technology, 2018, 115: 1-8.
[17] DIAO J J, LI X R, PEI G S, et al. Comparative metabolomic analysis of Crypthecodinium cohnii in response to different dissolved oxygen levels during docosahexaenoic acid fermentation[J]. Biochemical and Biophysical Research Communications, 2018, 499(4): 941-947.
[18] WEI Z H, CHEN N, LI Y J, et al. Glucose fed-batch integrated dissolved oxygen control strategy enhanced polysaccharide, total triterpenoids and inotodiol production in fermentation of a newly isolated Inonotus obliquus strain[J]. Process Biochemistry, 2018, 66: 1-6.
[19] ZHANG X L, CHEN J X, WU D, et al. Economical lipid production from Trichosporon oleaginosus via dissolved oxygen adjustment and crude glycerol addition[J]. Bioresource Technology, 2019, 273: 288-296.
[20] 白亚磊,徐庆阳,谢希贤,等. 溶氧控制对黄色短杆菌YILW合成L-异亮氨酸的影响[J]. 天津科技大学学报,2011,26 (1): 5-9;30.
[21] 张成林,刘远,薛宁,等. 苏云金芽孢杆菌重组L-异亮氨酸羟化酶的酶学性质及其在4-羟基异亮氨酸合成中的应用[J]. 微生物学报,2014,54(8): 889-896.
[22] ZHANG C, MA J, LI Z, et al. A strategy for L-isoleucine dioxygenase screening and 4-hydroxyisoleucine production by resting cells[J]. Bioengineered, 2017, 9 (1): 72-79.
[23] 张成林,龙辉,温冰,等. 双底物指数流加和双阶段溶氧控制对谷氨酸棒状杆菌生产L-异亮氨酸的影响[J]. 食品与发酵工业,2014,40(4): 1-6.
[24] LI Y, SUN L, FENG J, et al. Efficient production of α-ketoglutarate in the gdh deleted Corynebacterium glutamicum by novel double-phase pH and biotin control strategy[J]. Bioprocess and Biosystems Engineering, 2016, 39(6):967-976.
[25] HAUSINGER R P. Fe II/alpha-ketoglutarate-dependent hydroxylases and related enzymes[J]. Critical Reviews in Biochemistry and Molecular Biology, 2004, 39(1): 21-68.
[26] SHI F, NIU T, FANG H. 4-Hydroxyisoleucine production of recombinant Corynebacterium glutamicum ssp. lactofermentum under optimal corn steep liquor limitation[J]. Applied Microbiology and Biotechnology, 2015, 99(9):3 851-3 863.
文章导航

/