[1] 王丽颖, 李福香,杨雅轩,等. 多糖与多酚相互作用机制及其对多酚特性的影响研究进展[J]. 食品科学, 2017, 38(11): 276-282.
[2] WATRELOT A A, LE BOURVELLEE C, IMBERTY A, et al. Neutral sugar side chains of pectins limit interactions with procyanidins[J]. Carbohydrate Polymers, 2014, 99(1): 527-536.
[3] 张慧文, 张玉,马超美. 原花青素的研究进展[J]. 食品科学, 2015, 36(5): 296-304.
[4] SERRA A T, ROCHA J, SEPODES B, et al. Evaluation of cardiovascular protective effect of different apple varieties-Correlation of response with composition[J]. Food Chemistry, 2012, 135(4): 2 378-2 386.
[5] CONNOR C A, ADRIAENS M, PIERINI R, et al. Procyanidin induces apoptosis of esophageal adenocarcinoma cells via JNK activation of c-Jun[J]. Nutrition and Cancer, 2014, 66(2): 335-341.
[6] BITZER Z T, GLISAN S L, DORENKOTT M R, et al. Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation[J]. Journal of Nutritional Biochemistry, 2015, 26(8): 827-831.
[7] 张学杰, 郭科,苏艳玲. 果胶研究新进展[J]. 中国食品学报, 2010, 10(1): 167-174.
[8] MORRIS V J, GROMER A, KIRBY A R, et al. Using AFM and force spectroscopy to determine pectin structure and (bio) functionality[J]. Food Hydrocolloids, 2011, 25(2): 230-237.
[9] SAMOUT N, BOUZENNA H, DHIBI S, et al. Therapeutic effect of apple pectin in obese rats[J]. Biomedicine and Pharmacotherapy, 2016, 83: 1 233-1 238.
[10] PARKAR S G, REDGATE E L, WIBISONO R, et al. Gut health benefits of kiwifruit pectins: Comparison with commercial functional polysaccharides[J]. Journal of Functional Foods, 2010, 2(3): 210-218.
[11] GLINSKY V V, RAZ A. Modified citrus pectin anti-metastatic properties: one bullet, multiple targets[J]. Carbohydrate Research, 2009, 344(14): 1 788-1 791.
[12] BAI Xuelian, YUE Tianli, YUAN Yahong, et al. Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis[J]. Journal of Separation Science, 2010, 33(23-24): 3 751-3 758.
[13] LE BOURVELLEC C, GUYOT S, RENARD C. Non-covalent interaction between procyanidins and apple cell wall material Part I. Effect of some environmental parameters[J]. Biochimica et Biophysica Acta General Subjects, 2004, 1 672(3): 192-202.
[14] WATRELOT A A, LE BOURVELLEC C, IMBERTY A, et al. Interactions between pectic compounds and procyanidins are influenced by methylation degree and chain length[J]. Biomacromolecules, 2013, 14(3): 709-718.
[15] CARN F, GUYOT S, BARON A, et al. Structural properties of colloidal complexes between condensed tannins and polysaccharide hyaluronan[J]. Biomacromolecules, 2012, 13(3): 751-759.
[16] PADAYACHEE A, NETZEL G, NETZEL M, et al. Binding of polyphenols to plant cell wall analogues-Part Ι: Anthocyanins[J]. Food Chemistry, 2012, 134(1):155-161.
[17] LIN Z, FISCHER J, WICKER L. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin[J]. Food Chemistry, 2016, 194: 986-993.
[18] RENARD C M G C, WATRELOT A A, LE BOURVELLEC C. Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion[J]. Trends in Food Science and Technology, 2017, 60: 43-51.
[19] LIU Fuguo, MA Cuicui, GAO Yanxiang, et al. Food-grade covalent complexes and their application as nutraceutical delivery systems: A review[J]. Comprehensive Reviews in Food Science & Food Safety, 2016, 16(1): 76-95.
[20] LE BOURVELLEC C, WATRELOT A A, GINIES C, et al. Impact of processing on the noncovalent interactions between procyanidin and apple cell wall[J]. Journal of Agricultural and Food Chemistry, 2012, 60(37): 9 484-9 494.
[21] WANG Yuxue, LIU Jia, CHEN Fang, et al. Effects of molecular structure of polyphenols on their noncovalent interactions with oat β-glucan[J]. Journal of Agricultural and Food Chemistry, 2013, 61(19): 4 533-4 538.
[22] MAMET T, YAO Fen, LI Kaikai, et al. Persimmon tannins enhance the gel properties of high and low methoxyl pectin[J].LWT-Food Science and Technology, 2017, 86: 594-602.
[23] MAMET T, GE Zhenzhen, ZHANG Ying, et al. Interactions between highly galloylated persimmon tannins and pectins[J]. International Journal of Biological Macromolecules, 2018, 106: 410-417.
[24] APPELDOORN M M, SANDERS M, VINCKEN J, et al. Efficient isolation of major procyanidin A-type dimers from peanut skins and B-type dimers from grape seeds[J]. Food Chemistry, 2009, 117(4): 713-720.
[25] PONCETLEGRAND C, EDELMANN A, PUTAUX J L, et al. Poly (l-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio[J]. Food Hydrocolloids, 2006, 20(5): 687-697.
[26] LE BOURVELLEC C, PICOT M, RENARD C. Size-exclusion chromatography of procyanidins: Comparison between apple and grape procyanidins and application to the characterization of fractions of high degrees of polymerization[J]. Analytica Chimica Acta, 2006, 563(1-2): 33-43.
[27] FRACASSO A F, PERUSSELLO C A, CARPIN D, et al. Chemical modification of citrus pectin: Structural, physical and rheologial implications[J]. International Journal of Biological Macromolecules, 2018, 109: 784-792.
[28] 赵光远, 刁华娟,荆利强. 果胶对果胶-麦醇溶蛋白-儿茶素模拟体系稳定性的影响[J]. 食品科学, 2011, 32(18): 68-71.
[29] BOURVELLEC C L, BOUCHET B, RENARD C.Non-covalent interaction between procyanidins and apple cell wall material. Part Ⅲ: Study on model polysaccharides[J]. Biochimica et Biophysica Acta-General Subjects, 2005, 1 725(1): 10-18.
[30] BAUTISTA-ORTN A B, MOLERO N, MARN F, et al. Reactivity of pure and commercial grape skin tannins with cell wall material[J]. European Food Research and Technology, 2015, 240(3): 1-10.
[31] WATRELOT A A, TRAN D T, BUFFETEAU T, et al. Immobilization of flavan-3-ols onto sensor chips to study their interactions with proteins and pectins by SPR[J]. Applied Surface Science, 2016, 371: 512-518.
[32] BRAHEM M, EDER S, RENARD C M G C, et al. Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer[J]. LWT-Food Science and Technology, 2016, 85(B): 380-384.
[33] ZHAO Guangyuan, DIAO Huajuan, ZONG Wei. Nature of pectin-protein-catechin interactions in model systems: Pectin-protein-catechin interactions[J]. Food Science and Technology International, 2013, 19(2): 153-165.
[34] LIBI C, ZOYA O, ORY R, et al. Iron ions as mediators in pectin-flavonols interactions[J]. Food Hydrocolloids, 2018, 84: 441-449.
[35] WATRELOT A A, SCHULZ D L, KENNEDY J A. Wine polysaccharides influence tannin-protein interactions[J]. Food Hydrocolloids, 2017, 63: 571-579.
[36] BAUTISTA-ORTN A, BEN ABDALLAH R, CASTRO-LPEZ L, et al. Technological implications of modifying the extent of cell wall-proanthocyanidin interactions using enzymes[J]. International Journal of Molecular Sciences, 2016, 17(1): 123-135.
[37] LE BOURVELLEC C, RENARD C. Interactions between polyphenols and macromolecules: Quantification methods and mechanisms[J]. Critical Reviews in Food Science and Nutrition, 2012, 52(3): 213-248.
[38] SYMONEAUX R, CHOLLET S, PATRON C, et al. Prediction of sensory characteristics of cider according to their biochemical composition: Use of a central composite design and external validation by cider professionals[J]. LWT-Food Science and Technology, 2015, 61(1): 63-69.
[39] HAGHIGHI M, YARMAND M S, EMAM-DJOMEH Z, et al. Design and fabrication of pectin-coated nanoliposomal delivery systems for a bioactive polyphenolic: Phloridzin[J]. International Journal of Biological Macromolecules, 2018, 112: 626-637.
[40] 杨伟. 乳铁蛋白、EGCG和果胶三元复合物的形成机制及结构表征[D]. 北京:中国农业大学, 2015.
[41] BAI Haina, WANG Zhengyu, LI Hui, et al. Effect of five berry polyphenols and auricularia auricular polysaccharides combination on radiation protection[J]. Science and Technology of Food Industry, 2013, 34(16): 113-117.
[42] WANG Jingya, LIU Wei, CHEN Zhongqin, et al. Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma[J]. Biomedicine and Pharmacotherapy, 2017, 90: 160-170.
[43] OLIVEIRA A L, VONSTASZEWSKI M, PINTADO M, et al. Impact of pectin or chitosan on bulk, interfacial and antioxidant properties of (+)-catechin and β-lactoglobulin ternary mixtures[J]. Food Hydrocolloids, 2016, 55: 119-127.
[44] 梁迪, 杨曦,侯燕杰,等. 苹果果胶-多酚复合膜液制备、流变特性及抗氧化性研究[J]. 食品与发酵工业, 2018, 44(8): 99-106.
[45] LIU Jun, BAI Ruyu, LIU Yunpeng, et al. Isolation, structural characterization and bioactivities of naturally occurring polysaccharide-polyphenolic conjugates from medicinal plants-A review[J]. International Journal of Biological Macromolecules, 2018, 107(PtB): 2 242-2 250.
[46] 白海娜. 黑木耳多糖AAP-4与原花青素对辐射诱导氧化损伤协同防护作用[D]. 哈尔滨:哈尔滨工业大学, 2016.
[47] SERRA A, MACIA A, ROMERO M, et al. Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models[J]. British Journal of Nutrition, 2010,103(7):944-952.
[48] DUFOUR C, LOONIS M, DELOSIRE M, et al. The matrix of fruit & vegetables modulates the gastrointestinal bioaccessibility of polyphenols and their impact on dietary protein digestibility[J]. Food Chemistry, 2018, 240: 314-322.
[49] WILLIAMSON G, CLIFFORD M N. Colonic metabolites of berry polyphenols: The missing link to biological activity[J]. British Journal of Nutrition, 2010, 10 439(3): S48-S66.
[50] MATTILA I, HYTYLAINEN T, GOPALACHARYULU P, et al. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches[J]. European Journal of Nutrition, 2013, 52(2): 833-846.