研究报告

原花青素与果胶相互作用对果蔬加工特性的影响

  • 任佳琦 ,
  • 李福香 ,
  • 雷琳 ,
  • 赵吉春 ,
  • 李富华 ,
  • 明建
展开
  • 1.西南大学 食品科学学院,重庆,400715;
    2.西南大学,食品贮藏与物流研究中心,重庆,400715
硕士研究生(明建教授为通讯作者,E-mail:mingjian19 72@163.com)。

收稿日期: 2018-10-31

  修回日期: 2018-12-26

  网络出版日期: 2019-07-16

基金资助

国家重点研发计划专项(2016YFD0400200);中央高校基本科研业务费专项(XDJK2018B030);重庆市社会民生科技创新专项(cstc2015shms-ztzx80006)

Effects of interactions between procyanidins and pectins on processing properties of fruits and vegetables: A review

  • REN Jiaqi ,
  • LI Fuxiang ,
  • LEI Lin ,
  • ZHAO Jichun ,
  • LI Fuhua ,
  • MING Jian
Expand
  • 1. College of Food Science, Southwest University, Chongqing 400715, China;
    2.Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China

Received date: 2018-10-31

  Revised date: 2018-12-26

  Online published: 2019-07-16

摘要

原花青素、果胶作为果蔬中常见的功能成分,因具有良好的功能特性被广泛应用于食品工业。该文综述了原花青素与果胶之间共价、非共价相互作用机制,分析了原花青素和果胶结构、环境因素(温度、pH等)对相互作用的影响,以及相互作用对果蔬感官特性、功能特性、生物利用度的影响,并对二者相互作用未来研究方向进行展望。研究结果表明,二者相互作用对食品涩味,果汁果酒体系稳定性,复合物抗氧化活性,原花青素生物利用度等方面均存在一定的正向影响,这为果汁果酒澄清、稳定和食品营养添加剂开发等方面提供一定的参考。

本文引用格式

任佳琦 , 李福香 , 雷琳 , 赵吉春 , 李富华 , 明建 . 原花青素与果胶相互作用对果蔬加工特性的影响[J]. 食品与发酵工业, 2019 , 45(12) : 83 -88 . DOI: 10.13995/j.cnki.11-1802/ts.019217

Abstract

Procyanidins and pectins are common functional components in fruits and vegetables (F&Vs), and they have been widely used in food industries for their good functional properties. This paper reviewed the mechanisms of covalent and non-covalent interactions between procyanidins and pectins, and the effects of procyanidins and pectins structures, as well as environmental conditions (e.g. temperature and pH) on the interactions were analyzed. Besides, the effects of such interactions on sensory properties, functional characteristics, and bioavailability of F&Vs, and prospects for further researches on procyanidins and pectins were also discussed. Studies have shown that interactions between procyanidins and pectins have positive effects on the astringency of foods, the stability of fruit juices and wines, antioxidant activities of the complex, and the bioavailability of procyanidins. This paper provides references for clearing and stabilizing juices or fruit wines and developing nutritional additives.

参考文献

[1] 王丽颖, 李福香,杨雅轩,等. 多糖与多酚相互作用机制及其对多酚特性的影响研究进展[J]. 食品科学, 2017, 38(11): 276-282.
[2] WATRELOT A A, LE BOURVELLEE C, IMBERTY A, et al. Neutral sugar side chains of pectins limit interactions with procyanidins[J]. Carbohydrate Polymers, 2014, 99(1): 527-536.
[3] 张慧文, 张玉,马超美. 原花青素的研究进展[J]. 食品科学, 2015, 36(5): 296-304.
[4] SERRA A T, ROCHA J, SEPODES B, et al. Evaluation of cardiovascular protective effect of different apple varieties-Correlation of response with composition[J]. Food Chemistry, 2012, 135(4): 2 378-2 386.
[5] CONNOR C A, ADRIAENS M, PIERINI R, et al. Procyanidin induces apoptosis of esophageal adenocarcinoma cells via JNK activation of c-Jun[J]. Nutrition and Cancer, 2014, 66(2): 335-341.
[6] BITZER Z T, GLISAN S L, DORENKOTT M R, et al. Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation[J]. Journal of Nutritional Biochemistry, 2015, 26(8): 827-831.
[7] 张学杰, 郭科,苏艳玲. 果胶研究新进展[J]. 中国食品学报, 2010, 10(1): 167-174.
[8] MORRIS V J, GROMER A, KIRBY A R, et al. Using AFM and force spectroscopy to determine pectin structure and (bio) functionality[J]. Food Hydrocolloids, 2011, 25(2): 230-237.
[9] SAMOUT N, BOUZENNA H, DHIBI S, et al. Therapeutic effect of apple pectin in obese rats[J]. Biomedicine and Pharmacotherapy, 2016, 83: 1 233-1 238.
[10] PARKAR S G, REDGATE E L, WIBISONO R, et al. Gut health benefits of kiwifruit pectins: Comparison with commercial functional polysaccharides[J]. Journal of Functional Foods, 2010, 2(3): 210-218.
[11] GLINSKY V V, RAZ A. Modified citrus pectin anti-metastatic properties: one bullet, multiple targets[J]. Carbohydrate Research, 2009, 344(14): 1 788-1 791.
[12] BAI Xuelian, YUE Tianli, YUAN Yahong, et al. Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis[J]. Journal of Separation Science, 2010, 33(23-24): 3 751-3 758.
[13] LE BOURVELLEC C, GUYOT S, RENARD C. Non-covalent interaction between procyanidins and apple cell wall material Part I. Effect of some environmental parameters[J]. Biochimica et Biophysica Acta General Subjects, 2004, 1 672(3): 192-202.
[14] WATRELOT A A, LE BOURVELLEC C, IMBERTY A, et al. Interactions between pectic compounds and procyanidins are influenced by methylation degree and chain length[J]. Biomacromolecules, 2013, 14(3): 709-718.
[15] CARN F, GUYOT S, BARON A, et al. Structural properties of colloidal complexes between condensed tannins and polysaccharide hyaluronan[J]. Biomacromolecules, 2012, 13(3): 751-759.
[16] PADAYACHEE A, NETZEL G, NETZEL M, et al. Binding of polyphenols to plant cell wall analogues-Part Ι: Anthocyanins[J]. Food Chemistry, 2012, 134(1):155-161.
[17] LIN Z, FISCHER J, WICKER L. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin[J]. Food Chemistry, 2016, 194: 986-993.
[18] RENARD C M G C, WATRELOT A A, LE BOURVELLEC C. Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion[J]. Trends in Food Science and Technology, 2017, 60: 43-51.
[19] LIU Fuguo, MA Cuicui, GAO Yanxiang, et al. Food-grade covalent complexes and their application as nutraceutical delivery systems: A review[J]. Comprehensive Reviews in Food Science & Food Safety, 2016, 16(1): 76-95.
[20] LE BOURVELLEC C, WATRELOT A A, GINIES C, et al. Impact of processing on the noncovalent interactions between procyanidin and apple cell wall[J]. Journal of Agricultural and Food Chemistry, 2012, 60(37): 9 484-9 494.
[21] WANG Yuxue, LIU Jia, CHEN Fang, et al. Effects of molecular structure of polyphenols on their noncovalent interactions with oat β-glucan[J]. Journal of Agricultural and Food Chemistry, 2013, 61(19): 4 533-4 538.
[22] MAMET T, YAO Fen, LI Kaikai, et al. Persimmon tannins enhance the gel properties of high and low methoxyl pectin[J].LWT-Food Science and Technology, 2017, 86: 594-602.
[23] MAMET T, GE Zhenzhen, ZHANG Ying, et al. Interactions between highly galloylated persimmon tannins and pectins[J]. International Journal of Biological Macromolecules, 2018, 106: 410-417.
[24] APPELDOORN M M, SANDERS M, VINCKEN J, et al. Efficient isolation of major procyanidin A-type dimers from peanut skins and B-type dimers from grape seeds[J]. Food Chemistry, 2009, 117(4): 713-720.
[25] PONCETLEGRAND C, EDELMANN A, PUTAUX J L, et al. Poly (l-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio[J]. Food Hydrocolloids, 2006, 20(5): 687-697.
[26] LE BOURVELLEC C, PICOT M, RENARD C. Size-exclusion chromatography of procyanidins: Comparison between apple and grape procyanidins and application to the characterization of fractions of high degrees of polymerization[J]. Analytica Chimica Acta, 2006, 563(1-2): 33-43.
[27] FRACASSO A F, PERUSSELLO C A, CARPIN D, et al. Chemical modification of citrus pectin: Structural, physical and rheologial implications[J]. International Journal of Biological Macromolecules, 2018, 109: 784-792.
[28] 赵光远, 刁华娟,荆利强. 果胶对果胶-麦醇溶蛋白-儿茶素模拟体系稳定性的影响[J]. 食品科学, 2011, 32(18): 68-71.
[29] BOURVELLEC C L, BOUCHET B, RENARD C.Non-covalent interaction between procyanidins and apple cell wall material. Part Ⅲ: Study on model polysaccharides[J]. Biochimica et Biophysica Acta-General Subjects, 2005, 1 725(1): 10-18.
[30] BAUTISTA-ORTN A B, MOLERO N, MARN F, et al. Reactivity of pure and commercial grape skin tannins with cell wall material[J]. European Food Research and Technology, 2015, 240(3): 1-10.
[31] WATRELOT A A, TRAN D T, BUFFETEAU T, et al. Immobilization of flavan-3-ols onto sensor chips to study their interactions with proteins and pectins by SPR[J]. Applied Surface Science, 2016, 371: 512-518.
[32] BRAHEM M, EDER S, RENARD C M G C, et al. Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer[J]. LWT-Food Science and Technology, 2016, 85(B): 380-384.
[33] ZHAO Guangyuan, DIAO Huajuan, ZONG Wei. Nature of pectin-protein-catechin interactions in model systems: Pectin-protein-catechin interactions[J]. Food Science and Technology International, 2013, 19(2): 153-165.
[34] LIBI C, ZOYA O, ORY R, et al. Iron ions as mediators in pectin-flavonols interactions[J]. Food Hydrocolloids, 2018, 84: 441-449.
[35] WATRELOT A A, SCHULZ D L, KENNEDY J A. Wine polysaccharides influence tannin-protein interactions[J]. Food Hydrocolloids, 2017, 63: 571-579.
[36] BAUTISTA-ORTN A, BEN ABDALLAH R, CASTRO-LPEZ L, et al. Technological implications of modifying the extent of cell wall-proanthocyanidin interactions using enzymes[J]. International Journal of Molecular Sciences, 2016, 17(1): 123-135.
[37] LE BOURVELLEC C, RENARD C. Interactions between polyphenols and macromolecules: Quantification methods and mechanisms[J]. Critical Reviews in Food Science and Nutrition, 2012, 52(3): 213-248.
[38] SYMONEAUX R, CHOLLET S, PATRON C, et al. Prediction of sensory characteristics of cider according to their biochemical composition: Use of a central composite design and external validation by cider professionals[J]. LWT-Food Science and Technology, 2015, 61(1): 63-69.
[39] HAGHIGHI M, YARMAND M S, EMAM-DJOMEH Z, et al. Design and fabrication of pectin-coated nanoliposomal delivery systems for a bioactive polyphenolic: Phloridzin[J]. International Journal of Biological Macromolecules, 2018, 112: 626-637.
[40] 杨伟. 乳铁蛋白、EGCG和果胶三元复合物的形成机制及结构表征[D]. 北京:中国农业大学, 2015.
[41] BAI Haina, WANG Zhengyu, LI Hui, et al. Effect of five berry polyphenols and auricularia auricular polysaccharides combination on radiation protection[J]. Science and Technology of Food Industry, 2013, 34(16): 113-117.
[42] WANG Jingya, LIU Wei, CHEN Zhongqin, et al. Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma[J]. Biomedicine and Pharmacotherapy, 2017, 90: 160-170.
[43] OLIVEIRA A L, VONSTASZEWSKI M, PINTADO M, et al. Impact of pectin or chitosan on bulk, interfacial and antioxidant properties of (+)-catechin and β-lactoglobulin ternary mixtures[J]. Food Hydrocolloids, 2016, 55: 119-127.
[44] 梁迪, 杨曦,侯燕杰,等. 苹果果胶-多酚复合膜液制备、流变特性及抗氧化性研究[J]. 食品与发酵工业, 2018, 44(8): 99-106.
[45] LIU Jun, BAI Ruyu, LIU Yunpeng, et al. Isolation, structural characterization and bioactivities of naturally occurring polysaccharide-polyphenolic conjugates from medicinal plants-A review[J]. International Journal of Biological Macromolecules, 2018, 107(PtB): 2 242-2 250.
[46] 白海娜. 黑木耳多糖AAP-4与原花青素对辐射诱导氧化损伤协同防护作用[D]. 哈尔滨:哈尔滨工业大学, 2016.
[47] SERRA A, MACIA A, ROMERO M, et al. Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models[J]. British Journal of Nutrition, 2010,103(7):944-952.
[48] DUFOUR C, LOONIS M, DELOSIRE M, et al. The matrix of fruit & vegetables modulates the gastrointestinal bioaccessibility of polyphenols and their impact on dietary protein digestibility[J]. Food Chemistry, 2018, 240: 314-322.
[49] WILLIAMSON G, CLIFFORD M N. Colonic metabolites of berry polyphenols: The missing link to biological activity[J]. British Journal of Nutrition, 2010, 10 439(3): S48-S66.
[50] MATTILA I, HYTYLAINEN T, GOPALACHARYULU P, et al. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches[J]. European Journal of Nutrition, 2013, 52(2): 833-846.
文章导航

/