为了研究灵芝菌丝体固态发酵豆渣过程中的营养特性变化,以豆渣为原料,利用灵芝菌丝体固态发酵豆渣,研究发酵过程中菌质的形态指标、理化指标、生化指标的变化。结果表明,灵芝菌丝体发酵豆渣可分为3个阶段,1~5 d为发酵前期,5~9 d为发酵后期,9~11 d为老化期。豆渣经灵芝菌丝体固态发酵,总膳食纤维的质量分数在发酵前期由发酵前的43.16%显著下降至28.72%;脂肪的质量分数由发酵前的19.69%显著下降至发酵末期的12.29%;可溶性蛋白、氨基酸态氮的含量分别由发酵前的2.27 mg/g、1.16 mg/g显著上升至发酵末期的11.05 mg/g、9.94 mg/g;多肽的含量由发酵前的11.90 mg/g上升至发酵后期的19.59 mg/g。该研究结果为灵芝菌丝体固态发酵豆渣的工艺优化提供了理论依据。
Okara was solid-state fermented by Ganoderma lucidum and its nutritional changes, morphological, physicochemical and biochemical indexes were characterized. The fermentation was divided into three distinctive stages: early fermentation stage (1-5 d), late fermentation stage (5-9 d), and aging stage (9-11 d). It was found that in comparison to fresh okara, the mass fraction of total dietary fiber at early fermentation stage decreased significantly from 43.16% to 28.72%, and fat decreased significantly from 19.69% to 12.29% at aging stage. While soluble proteins and amino nitrogen increased significantly from 2.27 mg/g and 1.16 mg/g to 11.05 mg/g and 9.94 mg/g, respectively, at aging stage. Besides, the mass fraction of peptides increased from 11.90 mg/g to 19.59 mg/g at late fermentation stage. Overall, this study provides a theoretical basis for optimizing solid-state fermentation process of okara by G. lucidum.
[1] LI Shuhong, CHEN Ye, LI Kejuan, et al. Characterization of physicochemical properties of permented poybean curd residue by Morchella esculenta[J]. International Biodeterioration and Biodegradation, 2016, 109: 113-118.
[2] VONG Wengchan,LIU Shaoquan. Biovalorisation of okara (soybean residue) for food and nutrition[J]. Trends in Food Science & Technology, 2016,52: 139-147.
[3] VONG Wengchan, HUA Xinyi, LIU Shaoquan. Solid-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavour properties of okara[J]. LWT-Food Science and Technology, 2018, 90: 316-322.
[4] VONG Wengchan,YANG K L C A U, LIU Shaoquan. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica[J]. International Journal of Food Microbiology, 2016,235:1-9.
[5] 管瑛,汪瑨芃,李文,等. 豆渣固态发酵过程中主要营养成分及抗氧化特性变化[J]. 食品科学,2016, 37(21):189-194.
[6] 管瑛. 雅致放射毛霉DCY-1固态发酵豆渣的营养及功能性研究[D].南京:南京农业大学,2016.
[7] LI S H, SANG Y, ZHU D, et al. Optimization of fermentation conditions for crude polysaccharides by Morchella esculenta using soybean curd residue [J]. Industrial Crops and Products, 2013, 50:666-672.
[8] SHI Min, YANG Yingnan, GUAN Di, et al. Evaluation of solid-state fermentation by Ganoderma lucidum using soybean curd residue[J]. Food and Bioprocess Technology,2013,6(7):1 856-1 867.
[9] SHI Min, YANG Yingnan, WANG Qinghong, et al. Production of total polyphenol from fermented soybean curd residue by Lentinus edodes[J]. International Journal of Food Science and Technology, 2012, 47(6):1 215-1 221.
[10] LI Shuhong, ZHU Dan, LI Kejuan, et al. Soybean curd residue: Composition, utilization, and related limiting factors[J]. ISRN Industrial Engineering,2013: 1-9.
[11] YAO Yingzheng, PAN Siyi, WANG Kexing, et al. Fermentation process improvement of a Chinese traditional food: Soybean residue cake[J]. Journal of Food Science, 2010, 75(7):417-421.
[12] XIA Xuejuan, LI Guannan, ZHENG Jiong, et al. Biochemical, textural and microstructural changes in whole-soya bean cotyledon sufu during fermentation[J]. International Journal of Food Science and Technology,2014, 49(8):1 834-1 841.
[13] NAYAK B, PANDA B P. Modelling and optimization of texture profile of fermented soybean using response surface methodology [J]. Agriculture and Food, 2016, 1(4): 409-418.
[14] 罗信昌,陈士瑜.中国菇业大典[M]. 北京:清华大学出版社,2016:134.
[15] REDONDO-CUENCA A, VILLANUEVA-SUREZ M, MATEOS-APARICIO I. Soybean seeds and its by-products okara as sources of dietary fibre measurement by AOAC and Englyst method[J]. Food Chemistry, 2008,108(3): 1 099-1 105.
[16] 魏培莲,岑沛霖,盛春琦. 3种固态发酵生物量测定方法的比较[J]. 食品与生物技术学报, 2006,25(1): 60-64;69.
[17] 何国庆,贾英民. 食品微生物学(第3版)[M]. 北京:中国农业大学出版社,2016: 115.
[18] 贺运春.真菌学[M]. 北京:中国林业出版社, 2008: 47.
[19] 冮洁,马菽浩,李勇. 以豆渣为基料固态发酵培养美味牛肝菌[J]. 食品与发酵工业, 2010, 36(8): 112-114.
[20] 王夫杰,赵金杨,张金兰,等. 响应面法优化食用菌农平1号固态发酵豆渣的条件[J]. 食品科学, 2015, 36(9): 89-96.
[21] 张明,王燕,欧阳梦云. 模糊数学感官评价法优化豆渣发酵工艺[J]. 中国酿造, 2015,34 (9): 75-78.
[21] 张杉杉,涂传海,肖愈,等. 蛹虫草固态发酵豆渣的功能性成分与抗氧化活性[J]. 食品工业科技, 2017, 38(24): 69-74.
[22] 陶瑞霄,贾冬英,姚开,等. 豆渣毛霉发酵条件的研究[J]. 中国调味品, 2013, 38(4): 57-60;64.
[23] 谢欢,涂宗财,张露,等. 黑曲霉发酵制备高可溶性膳食纤维豆渣工艺优化及其水合性质研究[J]. 中国粮油学报, 2017, 32(4): 116-121;132.
[24] 潘进权,伍惠敏,陈雨钿. 毛霉发酵法制备豆渣可溶性膳食纤维的研究[J]. 食品科学, 2012, 33(15): 210-215.
[25] 张杉杉,涂传海,肖愈,等. 蛹虫草固态发酵豆渣的功能性成分与抗氧化活性[J]. 食品工业科技, 2017, 38(24): 69-74.
[26] 徐媛. 固态发酵法改变豆渣加工性能的研究[D]. 长春:吉林农业大学, 2012.
[27] 管瑛, 汪瑨芃,李文,等. 豆渣固态发酵过程中主要营养成分及抗氧化特性变化[J]. 食品科学, 2016, 37(21):189-194.
[28] 李应琼,许喜林.雅致放射毛霉和运动发酵单胞菌混合发酵霉豆渣研究[J]. 食品科学, 2011, 31(11): 103-106.
[29] 叶俊,李静,范亚苇,等. 粗壮脉纹孢菌发酵豆渣过程中营养成分的变化研究[J]. 中国食品学报, 2013, 13(12): 217-221.