通过建立洛哌丁胺诱导的小鼠便秘模型,评价凝结芽孢杆菌B.C-39芽孢与低聚果糖、低聚半乳糖、菊粉的复合微生态制剂对便秘的缓解效果。结果表明,与模型组相比,复合微生态制剂显著增加了便秘小鼠的排便颗粒数、粪便质量和水分含量,小肠推进率提高了43.9%,排首粒黑便的时间缩短了125 min,同时显著恢复了小鼠血清中胃动素(motilin,MTL)、胃泌素(gastrin,Gas)、内皮素(endothelin-1,ET-1)、生长抑素(somatostatin,SS)、P 物质(substance P,SP)和血管活性肠肽(vasoactive intestinal peptide,VIP)等胃肠调节肽的分泌水平,提高了小鼠粪便中短链脂肪酸的含量。凝结芽孢杆菌B.C-39复合微生态制剂具有缓解便秘的作用,为开发、应用具有缓解便秘功能的凝结芽孢杆菌微生态制剂提供了理论依据
A mouse model of loperamide-induced constipation was established to evaluate the effects of Bacillus coagulans B.C-39 spores containing oligofructose, galactooligosaccharides and inulin against constipation. A series of constipation related indicators were detected . The results showed that compared with the model group, the compound microecological preparation could significantly increase the fecal pellet numbers, fecal weight and water content of defecation. Meanwhile, the intestinal transit rate increased by 43.9%, and the first black stool defecation time was shortened by 125 minutes.The compound microecological preparation could also restore the levels of gastrointestinal regulatory peptides such as motilin (MTL), gastrin (Gas), endothelin (ET-1), somatostatin (SS), substance P (SP), and vasoactive intestinal peptide (VIP). Furthermore, feeding with compound microecological preparation increased the content of short chain fatty acids in mouse feces. These results showed that Bacillus coagulans B.C-39 compound microecological preparation could relieve constipation effectively.The results provide a theoretical basis for the development and application of Bacillus coagulans microecological preparations for relieving constipation.
[1] KONURAY G, ERGINKAYA Z. Potential use of Bacillus coagulans in the food industry[J]. Foods, 2018, 7(6): 92-102.
[2] MA K, MAEDA T, YOU H, et al. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient[J]. Bioresource Technology, 2014, 151: 28-35.
[3] HALDAR L, GANDHI D N. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model[J]. Veterinary World, 2016, 9(7): 766-772.
[4] SUDHA M R, ARUNASREE K M. Anti-inflammatory and immunomodulatory effects of Bacillus coagulans unique IS2[J]. International Journal of Probiotics and Prebiotics, 2015, 10(1): 31-36.
[5] 韩金凤. 凝结芽孢杆菌TBC169片治疗小儿便秘应用意义探析[J]. 医药, 2015(11): 251-251.
[6] 张丽霞, 沈华祥, 曹云飞, 等. 小麦纤维素颗粒联合凝结芽孢杆菌活菌片治疗晚期妊娠便秘的临床观察[J]. 中国微生态学杂志, 2016, 28(11): 1 333-1 336.
[7] 彭丽钦, 李立. 凝结芽孢杆菌活菌片预防产褥期便秘的临床观察[J]. 中国微生态学杂志,2014(8): 953-955.
[8] MINAMIDA K, NISHIMURA M, MIWA K, et al. Effects of dietary fiber with Bacillus coagulans lilac-01 on bowel movement and fecal properties of healthy volunteers with a tendency for constipation[J]. Bioscience Biotechnology Biochemistry, 2015, 79(2): 300-306.
[9] NYANGALE E P, FARMER S, KELLER D, et al. Effect of prebiotics on the fecal microbiota of elderly volunteers after dietary supplementation of Bacillus coagulans GBI-30, 6086[J]. Anaerobe, 2014, 30: 75-81.
[10] 赵晶晶. 低聚果糖液润肠通便功能的毒理学及人体试食评价[D]. 兰州: 兰州大学, 2017.
[11] MICKA A, SIEPELMEYER A, HOLZ A, et al. Effect of consumption of chicory inulin on bowel function in healthy subjects with constipation: a randomized, double-blind, placebo-controlled trial[J]. International Journal of Food Science and Nutrition, 2017, 68(1): 82-89.
[12] BELELI C A, ANTONIO M A, DOS SANTOS R, et al. Effect of 4'galactooligosaccharide on constipation symptoms[J]. Journal De Pediatria, 2015, 91(6): 567-573.
[13] WAITZBERG D L, LOGULLO L C, BITTENCOURT A F, et al. Effect of synbiotic in constipated adult women-a randomized, double-blind, placebo-controlled study of clinical response[J]. Clinical Nutrition, 2013, 32(1): 27-33.
[14] NAKABAYASHI I, NAKAMURA M, KAWAKAMI K, et al. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study[J]. Nephrol Dial Transplant, 2011, 26(3): 1 094-1 098.
[15] 中华人民共和国卫生部卫生法制与监督司编印.保健食品检验与评价技术规范[M],2003.
[16] 毛丙永. 功能性低聚糖对肠道细菌的影响及机制[D]. 无锡: 江南大学, 2015.
[17] WINTOLA O A, SUNMONU T O, AFOLAYAN A J. The effect of Aloe ferox Mill. in the treatment of loperamide-induced constipation in Wistar rats[J]. BMC Gastroenterol, 2010, 10: 95-99.
[18] LEE H Y, KIM J H, JEUNG H W, et al. Effects of Ficus carica paste on loperamide-induced constipation in rats[J]. Food and Chemical Toxicology, 2012, 50(3-4): 895-902.
[19] 丛丽敏. 益生菌联合膳食纤维改善便秘[D]. 大连: 大连医科大学, 2016.
[20] GÉLINAS P. Preventing constipation: a review of the laxative potential of food ingredients[J]. International Journal of Food Science and Technology, 2013, 48: 445-467.
[21] 王琳琳. 双歧杆菌对便秘的影响及其作用机理研究[D]. 无锡: 江南大学, 2017.
[22] SJÖLUND K, FASTH S, EKMAN R, et al. Neuropeptides in idiopathic chronic constipation (slow transit constipation)[J]. Neurogastroenterology and Motility, 1995, 9(3): 143-150.
[23] FEIGHNER S D, TAN C P, MCKEE K K, et al. Receptor for motilin identified in the human gastrointestinal system[J]. Science, 1999, 284: 2 184-2 188.
[24] SUO H, ZHAO X, QIAN Y, et al. Therapeutic effect of activated carbon-induced constipation mice with Lactobacillus fermentum Suo on treatment[J]. Int J Mol Sci, 2014, 15(12): 21 875-21 895.
[25] LI C, MICCI M A, MURTHY K S, et al. Substance P is essential for maintaining gut muscle contractility: a novel role for coneurotransmission revealed by botulinum toxin[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306(10): G839-G848.
[26] WANG L, HU L, XU Q, et al. Bifidobacterium adolescentis exerts strain-specific effects on constipation induced by loperamide in BALB/c mice[J]. International Journal of Molecular Sciences, 2017, 18(2):318-339.
[27] WERF M J, VENEMA K. Bifidobacteria: genetic modification and the study of their role in the colon[J]. Journal of Agricultural and Food Chemistry, 2001, 49(1): 378-383.
[28] Ranilla M J, Carro M D. Evaluation of Bacillus subtilis biopreparations as growth promoters in chickens[J]. Cuban Journal of Agricultural Science, 2013, 47(1):61-66.
[29] 季超, 任清, 李飞. 地衣芽孢杆菌代谢燕麦β-葡聚糖的初步研究[J]. 食品科技, 2015, 40(12): 7-14.