研究报告

副干酪乳杆菌的基因多样性及其抗生素耐受性分析

  • 李晓姝 ,
  • 殷瑞敏 ,
  • 毛丙永 ,
  • 崔树茂 ,
  • 赵建新
展开
  • 江南大学 食品学院,江苏 无锡,214122
硕士研究生(赵建新教授为通讯作者,E-mail:zhaojianxin@jiangnan.edu.cn)

收稿日期: 2019-03-02

  网络出版日期: 2019-08-20

基金资助

国家自然科学基金(31601453)

Genetic diversity and antibiotic resistance of Lactobacillus paracasei

  • LI Xiaoshu ,
  • YIN Ruimin ,
  • MAO Bingyong ,
  • CUI Shumao ,
  • ZHAO Jianxin
Expand
  • School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

Received date: 2019-03-02

  Online published: 2019-08-20

摘要

探究不同因素对副干酪乳杆菌系统进化的影响,并对其抗生素耐受性的基因型和表型进行关联分析。以分离自不同地区人或动物粪便样品及泡菜样品的33株副干酪乳杆菌为研究对象,利用比较基因组学对其基因组进行特征分析,同时测定12种抗生素对菌株的最低抑制浓度(minimum inhabitory conceutration,MIC)。部分菌株在进化树上以分离地区为主因素聚集;部分粪便源菌株对克林霉素、阿莫西林、环丙沙星、红霉素和四环素均存在抗性,而泡菜源菌株普遍对抗生素较为敏感;抗生素抗性基因与表型有一定的匹配性,个别菌株的高抗性是抗性基因ErmBtetM调控所导致。因此,分析副干酪乳杆菌的基因多样性和表型,可为其在发酵食品中的应用提供理论指导。

本文引用格式

李晓姝 , 殷瑞敏 , 毛丙永 , 崔树茂 , 赵建新 . 副干酪乳杆菌的基因多样性及其抗生素耐受性分析[J]. 食品与发酵工业, 2019 , 45(14) : 1 -8 . DOI: 10.13995/j.cnki.11-1802/ts.020412

Abstract

The purpose of this study was to explore the effects of different factors on Lactobacillus paracasei evolution and to correlate the genotypes and phenotypes of antibiotic resistance of L. paracasei. There were 33 strains of L. paracasei isolated from pickles and human or animal faeces from different regions, and they were characterized by comparative genomics. Their minimum inhibitory concentrations for 12 antibiotics were determined. The results showed that some strains from the same regions clustered together in the phylogenetic tree. Partial strains isolated from faeces were resistant to clindamycin, amoxicillin, ciprofloxacin, erythromycin, and tetracycline, while strains isolated from pickles were generally sensitive to all antibiotics. Antibiotic resistance genes matched with phenotypes to some extent and high antibiotic resistance of few strains was regulated by resistance genes ErmB and tetM. Therefore, analysis of genetic diversity and phenotypes of L. paracasei provides a theoretical guidance for their applications in fermented foods.

参考文献

[1] FENG J, JIANG Y, LI M, et al. Diversity and evolution of Lactobacillus casei group isolated from fermented dairy products in Tibet[J]. Archives of Microbiology, 2018, 200(7): 1 111-1 121.
[2] TOH H, OSHIMA K, NAKANO A, et al. Genomic adaptation of the Lactobacillus casei group[J]. Plos One, 2013, 8(10): e75073.
[3] VERDENELLI M C, GHELFI F, SILVI S, et al. Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces[J]. European Journal of Nutrition, 2009, 48(6): 355-363.
[4] WANNUN P, PIWAT S, TEANPAISAN R. Purification and characterization of bacteriocin produced by oral Lactobacillus paracasei SD1[J]. Anaerobe, 2014, 27: 17-21.
[5] BALIZARETTI S,TAVERNITI V, RONDINI G, et al. The vaginal isolate Lactobacillus paracasei LPC-S01 (DSM 26760) is suitable for oral administration[J]. Frontiers in Microbiology, 2015, 6: 952.
[6] MIAO J, GUO H, OU Y, et al. Purification and characterization of bacteriocin F1, a novel bacteriocin produced by Lactobacillus paracasei subsp. tolerans FX-6 from Tibetan kefir, a traditional fermented milk from Tibet, China[J]. Food Control, 2014, 42:48-53.
[7] GE J, SUN Y, XIN X, et al. Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice[J]. Scientific Reports, 2016, 6: 19 366.
[8] HASSAN Y I, BULLERMAN L B. Antifungal activity of Lactobacillus paracasei ssp. tolerans isolated from a sourdough bread culture[J]. International Journal of Food Microbiology, 2008, 121(1): 112-115.
[9] MARZOTTO M, MAFFEIS C, PATERNOSTER T, et al. Lactobacillus paracasei A survives gastrointestinal passage and affects the fecal microbiota of healthy infants[J]. Research in Microbiology, 2006, 157(9): 857-866.
[10] RIZZARDINI G, ESKESEN D, CALDER P C, et al. Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12(R) and Lactobacillus paracasei ssp. paracasei, L.casei431(R) in an influenza vaccination model: A randomised, double-blind, placebo-controlled study[J]. British Journal of Nutrition, 2012, 107(6): 876-884.
[11] VERDENELLI M C, SILVI S, CECCHINI C, et al. Influence of a combination of two potential probiotic strains, Lactobacillus rhamnosus IMC 501® and Lactobacillus paracasei IMC 502® on bowel habits of healthy adults[J]. Letters in Applied Microbiology, 2011, 52(6): 596-602.
[12] STEFANOVIC E, KILCAWLEY K N, REA M C, et al. Genetic, enzymatic and metabolite profiling of the Lactobacillus casei, group reveals strain biodiversity and potential applications for flavour diversification[J]. Journal of Applied Microbiology, 2017, 122(5): 1 245-1 261.
[13] SMOKVINA T, WELS M, POLKA J, et al. Lactobacillus paracasei comparative genomics: Towards species pan-genome definition and exploitation of diversity[J]. Plos One, 2013, 8(7): e68731.
[14] BAO Q, SONG Y, XU H, et al. Multilocus sequence typing of Lactobacillus casei isolates from naturally fermented foods in China and Mongolia[J]. Journal of Dairy Science, 2016, 99(7): 5 202-5 213.
[15] SUN Z, HARRIS H M B, MCCANN A, et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera[J]. Nature Communications, 2015, 6: 8 322.
[16] TURNER P E, WILLIAMS E S C P, OKEKE C, et al. Antibiotic resistance correlates with transmission in plasmid evolution[J]. Evolution, 2014, 68(12): 3 368-3 380.
[17] YU J, SONG Y, REN Y, et al. Genome-level comparisons provide insight into the phylogeny and metabolic diversity of species within the genus Lactococcus[J]. BMC Microbiology, 2017, 17(1): 213.
[18] LUO R, LIU B, XIE Y, et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 4(1): S13742-015.
[19] BORODOVSKY M, MILLS R, BESEMER J, et al. Prokaryoticgene prediction using Genemark and Genemark.hmm[J]. Current protocols in bioinformatics, 2003, 1(1):4-5.
[20] AZIZ R K, BARTELS D, BEST A A, et al. The RAST server: Rapid annotations using subsystems technology[J]. BMC Genomics, 2008, 9(1): 75.
[21] ZHAO Y, WU J, YANG J, et al. PGAP: Pan-genomes analysis pipeline[J]. Bioinformatics, 2011, 28(3): 416-418.
[22] KATOH K, MISAWA K, KUMA K, et al. MAFFT: A novel method for rapid multiple sequence alignment based on fast fourier transform[J]. Nucleic Acids Research, 2002, 30(14):3 059-3 066.
[23] RETIEF J D. Phylogenetic analysis using PHYLIP[J]. Methods in molecular biology, 1999,132(132):243-258.
[24] SAITOU N. The neighbour-joining method: A new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 10: 471-483.
[25] MCARTHUR A G, WAGLECHNER N, NIZAM F, et al. The comprehensive antibiotic resistance database[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(7): 3 348-3 357.
[26] EFSA Panel on Additives and Products of Substances used in Amimal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance[J]. EFSA Journal, 2012, 10(6): 2 740.
[27] MEDINI D, DONATI C, TETTELIN H, et al. The microbial pan-genome [J]. Current Opinion in Genetics & Development, 2005, 15(6): 589-594.
[28] TETTELIN H, MASIGNANI V, CIESLEWICZ M, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial pan-genome″[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(39): 13 950-13 955.
[29] 王彦杰.粪肠球菌乳源分离株与其它环境分离株基因组比较分析[D]. 内蒙古:内蒙古农业大学,2018.
[30] BONACINA J, SUÁREZ N, HORMIGO R, et al. A genomic view of food-related and probiotic Enterococcus strains[J]. DNA Research, 2016, 24(1): 11-24.
[31] SHAO Y, ZHANG W, GUO H, et al. Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum[J]. Food Control, 2015, 50: 250-258.
[32] DANIELSEN M, WIND A. Susceptibility of Lactobacillus spp. to antimicrobial agents[J]. International Journal of Food Microbiology, 2003, 82(1): 1-11.
文章导航

/