以10 个恩施地区米酒为研究对象,采用变性梯度凝胶电泳(denatured gradient gel electrophoresis,DGGE)与MiSeq高通量技术对其细菌多样性进行了评价。DGGE结果表明,恩施地区米酒中的细菌主要为Weissella、Enterococcus、Pediococcus、Kosakonia和Lactobacillus。MiSeq高通量测序结果表明,米酒中的细菌属主要为隶属于Firmicutes的Pediococcus、Enterococcus、Weissella,以及隶属于Proteobacteria的Kosakonia和隶属于Bacteroidetes的Prevotella,其平均相对含量分别为58.03%、10.72%、8.24%、3.34%和2.01%。在分类操作单元(operational taxonomic units,OTU)水平上,发现了6个核心OTU,其中OTU5646(隶属于Pediococcus)的平均含量为54.74%。采用传统纯培养技术共分离出17 株乳酸菌,其中11 株鉴定为Pediococcus pentosaceus。由此可见,Pediococcus为恩施地区米酒样品中的优势细菌。
Ten rice wine samples were collected from Enshi area and their bacterial community was illustrated by denaturing gradient gel electrophoresis and MiSeq high-throughput sequencing. The results indicated that the main bacterial populations in the rice wines were strains from genera of Weissella, Enterococcus, Pediococcus, Kosakonia and Lactobacillus. The relative abundances of Pediococcus, Enterococcus, Weissella, Kosakonia and Prevotella were 58.03%, 10.72%, 8.24%, 3.34%, and 2.01%, respectively. Six core operational taxonomic units (OTUs) were found. Of which, OTU5646, belonging to Pediococcus, represented 54.74% of the total qualified sequences. Besides, 17 strains were isolated by culture isolation and 11 of them were identified as Pediococcus pentosaceus. In conclusion, the dominant bacterial genus in the rice wines in Enshi region is Pediococcus.
[1] 郭成宇, 魏清秀. 不同酒曲生产小米酒的研究[J]. 中国酿造, 2017, 36(2): 145-150.
[2] 李小丽, 温晓梅. 海南甜米酒中乳酸与氨基酸成分的研究[J]. 价值工程, 2018, 37(4): 195-197.
[3] 张高楠, 苏钰亭,赵思明,等. 4种甜米酒主要营养成分与滋味特征对比及分析[J]. 华中农业大学学报, 2018, 37(2): 89-95.
[4] 赵翾, 刘功良,李红良,等. 响应面法优化香梨米酒的发酵工艺研究[J]. 中国酿造, 2017, 36(10): 186-189.
[5] 王婉君, 赵立艳,汤静. 新型米酒产品研究与开发进展[J]. 中国酿造, 2018, 37(5): 1-4.
[6] 李福荣.信阳民间传统米酒微生物的分离及鉴定[J]. 郑州工程学院学报, 2004(4): 62-64.
[7] 焦晶凯. 传统酿造米酒微生物多样性及优势菌特性的研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
[8] ERCOLINI D. PCR-DGGE fingerprinting: novel strategies for detection of microbes in food[J]. Journal of Microbiological Methods, 2004, 56(3): 297-314.
[9] MILANOVIC′ V, OSIMANI A, GAROFALO C, et al. Profiling white wine seed vinegar bacterial diversity through viable counting, metagenomic sequencing and PCR-DGGE[J]. International Journal of Food Microbiology, 2018, 65(12): 66-74.
[10] LIANG H, LI W, LUO Q, et al. Analysis of the bacterial community in aged and aging pit mud of Chinese Luzhou-flavour liquor by combined PCR-DGGE and quantitative PCR assay[J]. Journal of the Science of Food and Agriculture, 2015, 95(13): 2 729-2 735.
[11] CHOMBO-MORALES P, KIRCHMAYR M, GSCHAEDLER A, et al. Effects of controlling ripening conditions on the dynamics of the native microbial population of Mexican artisanal Cotija cheese assessed by PCR-DGGE[J]. LWT-Food Science and Technology, 2016, 65(1): 1 153-1 161.
[12] HONG Y, YANG H S, LI J, et al. Identification of lactic acid bacteria in salted Chinese cabbage by SDS-PAGE and PCR-DGGE[J]. Journal of the Science of Food and Agriculture, 2014, 94(2): 296-300.
[13] KOO O K, KIM H J, BAKER C A, et al. Microbial diversity of ground beef products in South Korean retail market analyzed by PCR-DGGE and 454 pyrosequencing[J]. Food Biotechnology, 2016, 30(1): 63-77.
[14] JEON Y S, PARK S C, LIM J, et al. Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform[J]. Journal of Microbiology, 2015, 53(1): 60-69.
[15] ZHU J, CHEN L, ZHANG Y, et al. Revealing the anaerobic acclimation of microbial community in a membrane bioreactor for coking wastewater treatment by Illumina MiSeq sequencing[J]. Journal of Environmental Sciences, 2018, 64(2): 139-148.
[16] OGUNADE I M, JIANG Y, CERVANTES A A P, et al. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157: H7 and silage additives[J]. Journal of Dairy Science, 2018, 101(3): 2 048-2 059.
[17] DU R, GE J, ZHAO D, et al. Bacterial diversity and community structure during fermentation of Chinese sauerkraut with Lactobacillus casei 11MZ-5-1 by Illumina MiSeq sequencing[J]. Letters in Applied Microbiology, 2018, 66(1): 55-62.
[18] XU X, ZHANG Z, HU S, et al. Response of soil bacterial communities to lead and zinc pollution revealed by Illumina MiSeq sequencing investigation[J]. Environmental Science and Pollution Research, 2017, 24(1): 666-675.
[19] KIM J, AN J U, KIM W, et al. Differences in the gut microbiota of dogs (Canis lupus familiaris) fed a natural diet or a commercial feed revealed by the Illumina MiSeq platform[J]. Gut Pathogens, 2017, 9(1): 68.
[20] 沈馨, 尚雪娇,董蕴,等. 基于MiSeq高通量测序技术对3个孝感凤窝酒曲细菌多样性的评价[J]. 中国微生态学杂志, 2018, 30(5): 525-530;544.
[21] 王玉荣, 沈馨,董蕴,等. 鲊广椒细菌多样性评价及其对风味的影响[J]. 食品与机械, 2018, 34(4): 25-30.
[22] 王玉荣, 孙永坤,代凯文,等. 基于单分子实时测序技术的 3个当阳广椒样品细菌多样性研究[J]. 食品工业科技, 2018, 39(2): 108-112;118.
[23] 张晓辉, 杨靖鹏,王少军,等. 浆水中细菌多样性分析及乳酸菌的分离鉴定[J]. 食品科学, 2017, 38(4): 70-76.
[24] 张振东, 赵慧君,沈馨,等. 米酒曲细菌多样性研究[J]. 中国微生态学杂志, 2018, 30(6): 640-646.
[25] 苗乘源, 郑琳,程雅韵,等. 朝鲜族传统米酒中的乳酸菌多样性分析[J]. 延边大学农学学报, 2016, 38(3): 248-250;270.
[26] 相飞. 甜酒曲中微生物群落结构及辣蓼甜酒曲的制曲工艺研究[D]. 上海:上海海洋大学, 2015.
[27] 韩琬. 应用单分子实时测序技术对米曲中微生物多样性的研究[D]. 呼和浩特:内蒙古农业大学, 2016.