综述与专题评论

重组酶聚合酶等温扩增技术在食品安全检测领域的应用

  • 兰海鸥 ,
  • 柯义强 ,
  • 马咸莹 ,
  • 程浩 ,
  • 丁功涛 ,
  • 李明生 ,
  • 陈士恩 ,
  • 马忠仁 ,
  • 魏嘉
展开
  • 1西北民族大学,生物医学研究中心,中国-马来西亚国家联合实验室,甘肃 兰州,730030
    2西北民族大学 生命科学与工程学院,甘肃 兰州,730030
硕士研究生(魏嘉副教授为通讯作者,E-mail:jiawei@xbmu.edu.cn)

收稿日期: 2018-11-12

  网络出版日期: 2019-08-20

基金资助

中国-马来西亚清真食品国家联合实验室,科技部援外项目(KY201501005);中央高校基本科研业务费专项资金项目利用RPA技术快速检测食品中花生过敏原方法的建立(319 20180127);西北民族大学双一流和特色发展引导专项(100187 03,1001070204);教育部“长江学者和创新团队发展计划”项目(IRT_17R88);甘肃省科技计划资助(17YF1WA166)

Application of recombinase-polymerase mediated isothermal amplification in food safety analysis

  • LAN Haiou ,
  • KE Yiqiang ,
  • MA Xianying ,
  • CHENG Hao ,
  • DING Gongtao ,
  • LI Mingsheng ,
  • CHEN Shien ,
  • MA Zhongren ,
  • WEI Jia
Expand
  • 1 China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
    2College of Life Sciences and Engineering,Northwest Minzu University, Lanzhou 730030, China

Received date: 2018-11-12

  Online published: 2019-08-20

摘要

重组酶聚合酶等温扩增技术(recombinase polymerase amplification,RPA)是一种新型核酸等温扩增技术。该技术相对于PCR等其他核酸体外扩增技术具有灵敏度高、特异性强、检测时间短、操作简便等特点。RPA技术在常温下即可进行等温扩增,其最适温度在37~42 ℃,RPA技术可在简单设备甚至恶劣环境对核酸的进行快速扩增,结合侧流层析技术荧光检测装置可对检测结果进行定性定量分析。文章综述了RPA技术的原理,操作条件及其在食源性病毒、食源性致病菌、动物源性检测及转基因食品检测等方面的应用,为该技术进行更加深入和广泛的研究提供参考。

本文引用格式

兰海鸥 , 柯义强 , 马咸莹 , 程浩 , 丁功涛 , 李明生 , 陈士恩 , 马忠仁 , 魏嘉 . 重组酶聚合酶等温扩增技术在食品安全检测领域的应用[J]. 食品与发酵工业, 2019 , 45(14) : 233 -238 . DOI: 10.13995/j.cnki.11-1802/ts.019291

Abstract

Recombinase-polymerase amplification (RPA) is a new isothermal amplification technique for detecting specific nucleotide sequences. Compared with regular PCR amplification, it has advantages of high sensitivity, high specificity, short detection time and simple operation. At optimal temperature (37-42℃), RPA can be used to amplify specific nucleotide sequences rapidly with simple equipment even in harsh environment. The detection results can be qualitatively and quantitatively analyzed by combining with fluorescence detection device of side-flow chromatography technology. The principles and operating conditions of RPA as well as its applications in detecting food-borne virus, pathogenic bacteria, animal-derived components and transgenic foods were summarized in this paper in order to provide a reference for further extensive researches on RPA.

参考文献

[1] YAN L, ZHOU J, ZHENG Y, et al. Isothermal amplified detection of DNA and RNA[J]. Molecular Biosystems, 2014, 10(5):970-1 003.
[2] 景志刚, 董浩,狄栋栋,等.重组酶聚合酶扩增技术研究进展[J].生物技术通报,2016,32(6):47-53.
[3] 王晓勋,徐嘉良.重组酶聚合酶扩增技术及其在食品安全领域的应用[J].食品科技,2018,43(6):1-7.
[4] ZOU L, ELLEDGE S J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes[J]. Science, 2003,300(5 625):1 542-1 548.
[5] EULER M, WANG Y, NENTWWICH O, et al. Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus [J]. Journal of Clinical Virology, 2012, 54(4):308-312.
[6] WANG J, WANG J, GENG Y, et al. A recombinase polymerase amplification-based assay for rapid detection of African swine fever virus[J]. Canadian Journal of Veterinary Research, 2017, 81(4):308-312.
[7] 郭正洋,刘钟栋,刘小青,等.重组酶聚合酶扩增技术的研究进展[J].食品科技,2018,43(9):55-59.
[8] 彭志, 陈刚毅,刘雪飞,等. 温核酸扩增技术在病原体检测中的应用[J].生物技术进展,2018,8(4):284-292;370.
[9] HANSEN S, SCHÃFER J, FECHNER K, et al. Development of a recombinase polymerase amplification assay for rapid detection of the Mycobacterium avium subsp. paratuberculosis[J]. Plos One, 2016, 11(12):e0168733.
[10] DU X J, ZANG Y X, LIU H B, et al. Recombinase polymerase amplification combined with lateral flow strip for Listeria monocytogenes detection in food[J]. Journal of Food Science, 2018, 83(4):1 041-1 047.
[11] GAO W F, HUANG H L, ZHANG Y, et al. Recombinase polymerase amplification-based assay for rapid detection of Listeria monocytogenes in food samples[J]. Food Analytical Methods, 2017, 10(6):1 972-1 981.
[12] 郭燕华,王德莲,王强,等.重组酶介导等温扩增技术快速检测牛肉及牛肉制品中的牛源性成分[J].食品安全质量检测学报,2017,8(5):1 745-1 749.
[13] 熊炜,王艳,王楷宬,等.快速检测犬瘟热病毒的实时荧光RPA方法的建立[J].中国兽医科学,49(1):34-40.
[14] 周广彪,段建发,胡晓珊,等.重组酶聚合酶扩增技术(RPA)检测拟态弧菌[J].检验检疫学刊,2018,28(5):1-4;16.
[15] 王金凤, 刘立兵,耿云云,等.单核细胞增生李斯特氏菌实时荧光RPA检测方法的建立及应用[J].现代食品科技,2018,34(8):213-218;98.
[16] 陈文秀. 实时荧光环介导等温扩增技术检测婴幼儿奶粉中阪崎肠杆菌的研究[D]. 保定:河北农业大学, 2014.
[17] 胡金强, 魏向珂,黄润娜,等.食源性致病菌RPA检测技术研究进展[J].食品工业科技,2018,39(7):329-334.
[18] TU P A, SHIU J S, LEE S H, et al. Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection [J]. Journal of Virological Methods, 2017, 243:98-104.
[19] 吴耀东, 徐民俊,郑文斌,等. 重组酶聚合酶扩增技术及其在动物病原快速检测中的应用[J].中国兽医学报,2016,36(10):1 797-1 802.
[20] YANG Y, QIN X, WANG G, et al. Development of an isothermoal amplification-based assay for rapid visual detection of an Orf virus[J]. Virology Journal, 2016, 13(1):46.
[21] 李晓丽, 陈国亮,吉鸿超,等. 三种LB-ELISA试剂盒在奶牛A型口蹄疫抗体检测中的比较[J].黑龙江畜牧兽医,2018(20):186-188.
[22] 谭立明. ELISA法检测的影响因素及其对策[J]. 实验与检验医学, 2013, 31(4):300-305.
[23] CHOI G, JUNG J H, PARK B H, et al. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria[J]. Lab on A Chip, 2016, 16(12):2 309-2 316.
[24] KIM J Y, LEE J L. Development of a multiplex real-time recombinase polymerase amplification (RPA) assay for rapid quantitative detection of Campylobacter coli, and jejuni, from eggs and chicken products[J]. Food Control, 2016, 73(Pt B):1 247-1 255.
[25] 赵琢, 高欣,张捷,等.食源性病毒免疫检测方法研究概述[J].广东化工,2017,44(15):196-197.
[26] GAO W, HUANG H, ZHU P, et al. Recombinase polymerase amplification combined with lateral flow dipstick for equipment-free detection of Salmonella in shellfish[J]. Bioprocess & Biosystems Engineering, 2018, 41(5):603-611.
[27] KERSTING S, RAUSCH V, BIER F F, et al. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens[J]. Microchimica Acta, 2014, 181(13-14):1 715-1 723.
[28] KIM T H, PARK J, KIM C J, et al. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens[J]. Analytical Chemistry, 2014, 86(8):3 841-3 848.
[29] LIU H, ZANG Y X, DU X J, et al. Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria[J]. Journal of Dairy Science, 2017, 100(9):7 016-7 025.
[30] WANG H M, ZHAO G M, HOU P L, et al. Rapid detection of foot-and-mouth disease virus using reverse transcription recombinase polymerase amplification combined with a lateral flow dipstick [J]. Journal of Virological Methods,2018,261:46-50.
[31] YEHIA N, ARAFA A S, EI W A A, et al. Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection[J]. Journal of Virological Methods, 2015, 223(2):45-49.
[32] EI W A A, WEIDMANN M, HUFERT F T. Diagnostics-in-a-suitcase: Development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus[J]. Journal of Clinical Virology, 2015, 69:16-21.
[33] 郭燕华, 陈遂,王德莲,等.基于重组酶等温扩增技术快速检测生鲜肉中猪源性成分[J].食品安全质量检测学报,2017,8(6): 2 012-2 016.
[34] 吴昊, 谢文佳,王艳丽,等. 利用重组酶聚合酶扩增技术快速鉴定肉及肉制品中的猪源性成分[J].食品科技,2017,42(10):318-322.
[35] 贾玄. RPA等温扩增技术在转基因水稻检测中的应用[D]. 北京:中国农业科学院, 2017.
[36] 李凯, 金芜军,李亮,等.转基因玉米Bt11品系特异性荧光RPA检测[J].分子植物育种,2017,15(11):4 741-4 745.
[37] XU C, LI L, JIN W, et al. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modifid crops[J]. International Journal of Molecular Sciences, 2014, 15(10):18 197-18 205.
[38] CHANDU D, PAUL S, PARKER M, et al. Development of a rapid point-of-use DNA test for the screening of genuity roundup ready 2 yield soybean in seed samples[J]. BioMed Research International, 2016(4):3 145 921.
[39] SANTIAGO-FELIPE S, TORTAGADA-GENARO L A, PUCHADES R, et al. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis[J]. Analytica Chimica Acta, 2014, 811: 81-87.
[40] JAUSET-RUBIO M, DEL-RIO J S, MAIRAL T, et al. Ultrasensitive and rapid detection of β-conglutin combining aptamers and isothermal recombinase polymerase amplification.[J]. Analytical & Bioanalytical Chemistry, 2017, 409(1):143-149.
文章导航

/