研究报告

基于细胞碳-氮-氧需求的补料批发酵策略促进杆菌肽合成

  • 杨华 ,
  • 宋昭 ,
  • 戴航 ,
  • 陈雄 ,
  • 李欣 ,
  • 陈守文 ,
  • 蔡冬波 ,
  • 李俊辉 ,
  • 王志
展开
  • 1发酵工程教育部重点实验室,湖北省工业发酵协同创新中心,湖北省工业微生物重点实验室,湖北工业大学,湖北 武汉,430068
    2省部共建生物催化与酶工程国家重点实验室湖北大学,湖北 武汉,430062
    3绿康生化股份有限公司,福建 浦城,353400
硕士研究生(王志教授为通讯作者,E-mail:wangzhi1002@126.com)。

网络出版日期: 2019-09-03

基金资助

省部共建生物催化与酶工程国家重点实验室开放课题(SKLBEE2018005)

Feeding batch fermentation strategy based on cellular demands of carbon-nitrogen-oxygen promotes bacitracin synthesis

  • YANG Hua ,
  • SONG Zhao ,
  • DAI Hang ,
  • CHEN Xiong ,
  • LI Xin ,
  • CHEN Shouwen ,
  • CAI Dongbo ,
  • LI Junhui ,
  • WANG Zhi
Expand
  • 1Key Laboratory of Fermentation Engineering Ministry of Education, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068,China
    2State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei University, Wuhan 430062, China
    3Lifecome Biochemistry Co., LTD, Pucheng 353400, China

Online published: 2019-09-03

摘要

为了提高杆菌肽补料发酵的效率,在50 L罐水平研究了pH耦合、间歇-罐压控制和间歇-溶氧(dissolved oxygen, DO)耦合等补料策略对杆菌肽合成的影响。pH耦合策略的杆菌肽效价为1 006 U/mL,但存在对数中后期因pH低于设定值而无法补入葡萄糖的问题。间歇-罐压控制策略的效价(1 118 U/mL)比pH耦合策略提高了11%,但也存在发酵后期补糖量与DO不匹配的问题。间歇-DO耦合策略克服了以上缺陷,糖对杆菌肽的转化率(YP/S)比间歇-罐压控制策略提高了22.7%。基于间歇-DO耦合补料策略并于24 h二次补入氮源后,其平均杆菌肽合成速率达到了40.67 U/(mL·h),杆菌肽效价峰值达到了1 220 U/mL。建立了基于细胞需求的综合碳-氮-氧因素的补料策略,为工业化补料发酵生产杆菌肽提供了重要参考。

本文引用格式

杨华 , 宋昭 , 戴航 , 陈雄 , 李欣 , 陈守文 , 蔡冬波 , 李俊辉 , 王志 . 基于细胞碳-氮-氧需求的补料批发酵策略促进杆菌肽合成[J]. 食品与发酵工业, 2019 , 45(15) : 30 -36 . DOI: 10.13995/j.cnki.11-1802/ts.020397

Abstract

In order to enhance the efficiency of bacitracin fed-batch fermentation, effects of pH coupling, intermittent feeding-tank pressure control, intermittent-dissolved oxygen (DO) coupling and other feeding strategies on bacitracin synthesis were investigated in a 50 L fermenter. The amount of bacitracin produced by pH coupling strategy was 1 006 U/mL. However, in middle and late stages of logarithmic growth, glucose could not be filled in due to pH below the set value. Although bacitracin produced by intermittent feeding-tank pressure control strategy was 11% higher than that of pH coupling strategy, it also had a problem of sugar-DO mismatched at late fermentation stage. The intermittent-DO coupling strategy overcame the above drawbacks, the conversion rate of sugar to bacitracin (YP/S) increased by 22.7% compared with that of intermittent feeding-tank pressure control strategy. Based on intermittent-DO coupling feeding strategy and secondary nitrogen source feeding at 24 h, the average bacitracin synthesis rate reached 40.67 U/(mL·h), and the peak value of bacitracin production reached 1 220 U/mL. Therefore, a feeding strategy based on comprehensive carbon-nitrogen-oxygen factor of cell demand is established, which provides an important reference for industrialized fed-batch fermentation to produce bacitracin.

参考文献

[1] SHRUTI B, KUMAR D, PATRICIA R, et al. High level extracellular production of recombinant γ-glutamyl transpeptidase from Bacillus licheniformis in Escherichia coli fed-batch culture[J]. Enzyme and Microbial Technology, 2018, 116:23-32.
[2] 祝亚娇, 宋嘉宾,陈杨阳,等. 地衣芽胞杆菌工程菌高产纳豆激酶的发酵罐工艺优化及中试放大[J]. 食品与发酵工业, 2016, 42(1):37-41.
[3] ZHAO Y L, WEN L Y, CHEN S W, et al. Increased flux through the TCA cycle enhances bacitracin production by Bacillus licheniformis DW2 [J]. Applied Microbiology and Biotechnology, 2018, 102(16):6 935-6 946.
[4] HANSEN F T, GARDINER D M, LYSE E, et al. An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium [J]. Fungal Genetics and Biology, 2015, 75:20-29.
[5] 李冠楠, 夏雪娟,隆耀航,等. 抗菌肽的研究进展及其应用[J]. 动物营养学报, 2014, 26 (1):17-25.
[6] 罗娟, 马海乐,刘雪姣,等. 枯草芽孢杆菌液态发酵豆粕的种子培养基和发酵培养基优化研究[J]. 食品工业科技, 2016,37(8):229-233;251.
[7] PURI-TANEJA A, SCHAU M, CHEN Y. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD[J]. Journal of Bacteriology, 2007, 189(9):3 348-3 358.
[8] KABISCH J, PRATZKA I, MEYER H, et al. Metabolic engineering of Bacillus subtilis for growth on overflow metabolites[J]. Microbial Cell Factories, 2013, 12(1):72.
[9] PACZIA N, NILGEN A, LEHMANN T, et al. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms[J]. Microbial Cell Factories, 2012, 11(1):1-14.
[10] MITSUNAGA H, MEISSNER L, PALMEN T, et al. Metabolome analysis reveals the effect of carbon catabolite control on the poly (γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945[J]. Journal of Bioscience & Bioengineering, 2015, 121(4):413-419.
[11] 邓坤,冀志霞,陈守文,等. 溶氧对地衣芽孢杆菌DW2合成杆菌肽的影响[J]. 中国抗生素杂志,2009, 34(11):664-668.
[12] 曾新年, 鲍帅帅,李洪杰,等. 双氧水对地衣芽胞杆菌合成杆菌肽的影响[J]. 中国酿造, 2013, 32(3):94-97.
[13] WANG Z, WANG Y, XIE F L, et al. Improvement of acetoin reductase activity enhances bacitracin production by Bacillus licheniformis[J]. Process Biochemistry, 2014, 49(12):2 039-2 043.
[14] 刘道奇, 陈守文,李俊辉,等. 混合碳源对地衣芽孢杆菌发酵合成杆菌肽的影响[J]. 食品与发酵工业, 2017,43(9):56-61.
[15] 辛星. 工程菌株发酵FK520的过程优化和抑制泡沫促进剂研究[D]. 天津:天津大学, 2014.
[16] 陈伟波, 周旭波,陈悦群,等. L-精氨酸发酵过程中的溶氧与泡沫研究[J]. 中外食品工业, 2015, 8(4):18-20.
[17] REFFATTI P F, ROY I, ODELL M, et al. Proteomics analysis of Bacillus licheniformis in response to oligosaccharides elicitors[J]. Enzyme and Microbial Technology, 2014, 61(1): 61-66.
[18] WANG Q, ZHENG H, WAN X, et al. Optimization of inexpensive agricultural by-products as raw materials for Bacitracin production in Bacillus licheniformis DW2 [J]. Applied Biochemistry and Biotechnology, 2017, 183(4):1 146-1 157.
[19] AHARONOWITZ Y. Nitrogen metabolite regulation of antibiotic biosynthesis[J]. Annual Review of Microbiology, 1980,34:209-233.
[20] 顾晓峰,颜盼.一种基于枯草芽孢杆菌的豆粕发酵方法:湖北,CN106490300A[P].2017-03-15.
[21] CHEN X, XIE F, ZENG X, et al. Supplementations of ornithine and KNO3 enhanced bacitracin production by Bacillus licheniformis LC-11[J]. Annals of Microbiology, 2014, 64(2): 509-514.
[22] BARBIERI G, ALBERTINI A M, FERRARI E, et al. Interplay of CodY and ScoC in the regulation of major extracellular protease genes of Bacillus subtilis[J]. Journal of Bacteriology, 2016,198(6):907-920.
[23] RANDAZZO P, AUCOUTURIER A, DELUMEAU O, et al. Revisiting the in vivo GlnR-binding sites at the genome scale in Bacillus subtilis[J]. BMC Research Notes, 2017,10(1):422-431.
[24] SHU C C, WANG D, GUO J, et al. Analyzing AbrB-knockout effects through genome and transcriptome sequencing of Bacillus licheniformis DW2[J]. Frontiers in Microbiology, 2018,9:1-11.
[25] WANG J, LIU S, LI Y, et al. Central carbon metabolism influences cellulase production in Bacillus licheniformis[J]. Letters in Applied Microbiology, 2017,66(1):49-54.
[26] LIU Z Y, YU W L, NOMURA T C, et al. Increased flux through the TCA cycle enhances bacitracin production by Bacillus licheniformis DW2 [J]. Applied Microbiology and Biotechnology, 2018,102(16):6 935-6 946.
文章导航

/