以分离自泡菜的2株魏斯氏菌为研究对象,对其耐酸、耐胆盐、耐人工肠液、抑菌、降解胆固醇和甘油三酯、表面特性的益生特性进行了比较研究。实验结果表明:绿色魏斯菌ZY-6的耐酸特性好于希腊魏斯菌WS-419,pH值为2时的存活率分别为45.18%和24.65%,pH为3和4时,存活率>100%;在质量浓度3 g/L的胆盐浓度中存活率分别为75.89%和72.05%,都显示出较好的胆盐耐受性;2株菌对人工肠液具有一定的抗性,3 h后的存活率在80%左右;ZY-6的抑菌活性稍好于WS-419,两者对大肠杆菌、金黄色葡萄球菌、沙门氏菌的抑菌圈直径分别为22.61、27.02、30.53 mm和22.59、 25.82、27.96 mm;2株魏斯菌降解胆固醇的能力相似,降解率分别为32.79%和32.13%;WS-419对甘油三酯的降解率好于ZY-6,两者分别为42.80%和26.70%;2株菌的表面疏水性和表面凝集性皆大于60%,显示出较好的表面特性。绿色魏斯菌ZY-6和希腊魏斯菌WS-419的益生性能较好,可作为功能性食品开发的候选菌株。
Two Weissella strains were studied regarding their acid, bile salt and simulated intestinal fluid tolerance, as well as their antibacterial activity, cholesterol and triglyceride degradation activity and cell-surface property. The results showed that the acid resistance of Weissella viridescens ZY-6 was better than that of Weissella Hellenica WS-419. The survival rates of the two strains at pH 2 were 45.18% and 24.65%, respectively, and greater than 100% at pH 3 and pH 4. With 3 g/L bile salt, the survival rates of W. viridescens ZY-6 and W. Hellenica WS-419 were 75.89% and 72.05%, respectively. Moreover, they both had strong simulated intestinal fluid tolerance, as their survival rates were about 80% after 3 h treatment. In addition, ZY-6 also had better performance than WS-419 in antimicrobial activity, as its inhibition zone diameters for Escherichia coli, Staphylococcus aureus, and Salmonella were 22.61 mm, 27.02 mm and 30.53 mm, respectively. They also showed similar cholesterol degradation activity, which were 32.79% and 32.13%, respectively, while WS-419 showed better triglyceride degradation activity (42.80%) than that of ZY-6 (26.70%). Besides, the cell surface hydrophobicity and auto-aggregation of them were both more than 60%. In conclusion, both W. viridescens ZY-6 and W. Hellenica WS-419 have good probiotic characteristics, therefore, they can be served as candidate strains for developing functional foods.
[1] CAGGIA C, DE A M, PITINO I, et al. Probiotic features of Lactobacillus strains isolated from Ragusano and Pecorino Siciliano cheeses[J]. Food Microbiology, 2015, 50: 109-117.
[2] CARR F J, CHILL D, MAIDAN. The lactic acid bacteria: a literature survey [J]. Critical Reviews in Microbiology, 2002,28(4):281-370.
[3] RUIZ R L, VERA P E, ROLLAN G, et al. Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented quinoa sourdoughs[J]. Journal of Applied Microbiology, 2016, 120(5):1 289-1 301.
[4] 陈晓华, 肖苇苇, 田丰伟, 等. 具有拮抗幽门螺杆菌作用的植物乳杆菌特性研究[J]. 食品工业科技, 2012,33(2): 195-198.
[5] LEROY F, DEVUYSTL L. Lactic acid bacteria as functional starter cultures for the food fermentation industry[J]. Trends in Food Science & Technology,2004, 15(2):67-78.
[6] FOLIGNE B, NUTTEN S, GRANGETTE C, et al. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria[J]. World Journal of Gastroenterology, 2007, 13(2): 236.
[7] DEL C S , ALEJANDRA L B, LEVIT R, et al. Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model[J]. International Immunopharmacology, 2017, 42:122-129.
[8] BANSAL T, GARG S. Probiotics: From functional foods to pharmaceutical products[J]. Current Pharmaceutical Biotechnology, 2008, 9(4): 267-287.
[9] GOPAL P K, PRASAD J, SMART J, et al. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli[J]. International Journal of Food Microbiology, 2001, 67(3):207-216.
[10] PARK J H, LEE Y, MOON E, et al. Immunoenhancing effects of a new probiotic strain, Lactobacillus fermentum PL9005[J]. Journal of Food Protection, 2005, 68(3): 571-576.
[11] 林龙镇,邹卫玲,李安章,等. 产酸、耐酸乳酸菌的分离鉴定及益生特性[J]. 华南农业大学学报, 2018, 39(2): 95-102.
[12] 周晏阳,孔雪英,吴梅,等.一株牦牛源产细菌素植物乳杆菌的益生特性分析[J].食品科学, 2018, 39(14): 132-137.
[13] SEDDIK H A, BENDALI F, GANCEL F, et al. Lactobacillus plantarumand its probiotic and food potentialities[J]. Probiotics and Antimicrobial Proteins,2017, 9(2):111-122.
[14] VERDENELLIMC, GHEFLI F, SILVI S, et al. Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces[J]. European Journal of Nutrition, 2009, 48(6):355-363.
[15] 李巧玉, 方芳, 堵国成, 等.魏斯氏菌在发酵食品中的应用[J]. 食品与发酵工业,2017, 43(10):246-252.
[16] 张卓丹, 张铁华, 李达, 等. 二株嗜热链球菌益生特性的体外研究[J]. 中国乳品工业, 2011, 39(7): 8-11.
[17] HUANG C H, QIAO S Y, LI D F, et al. Effect of Lactobacilli on the performance, diarrhea incidence, VFA concentration and gastrointestinal microbial flora of weaning pigs[J]. Asian-Australasion Journal of Animal Sciences, 2004,17(3): 401-409.
[18] 吕嘉枥, 闫亚梅, 王霄鹏, 等. 10株益生菌益生特性的比较研究[J]. 陕西科技大学学报, 2016, 34(1): 118-122.
[19] KO C Y, LIN H T V, TSAI G J. Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model[J]. Process Biochemistry, 2013, 48(4): 559-568.
[20] 代永刚, 田志刚, 南喜平. 乳酸菌及其生理功能研究的进展[J]. 农产品加工, 2009(7): 24-26.
[21] 赵晴, 张甲耀, 陈兰洲, 等. 疏水性石油烃降解菌细胞表面疏水性及降解特性[J]. 环境科学, 2005, 26(5): 132-136.
[22] 刘秀侠, 徐海燕, 辛国芹,等. 11株枯草芽孢杆菌益生特性研究[J]. 中国畜牧兽医, 2017,44(8):2 333-2 341.
[23] 杨颖, 田丰伟, 陈卫, 等. 两株乳杆菌益生特性的体外研究[J]. 中国乳品工业, 2006, 34(6): 16-19.
[24] 朱振军, 黄国宏, 梁晓琳, 等. 罗伊氏乳杆菌的益生特性及安全性分析[J]. 现代食品科技,2016, 32(6): 315-320.
[25] 梁东梅, 李玉鹏, 杜艳芬. 三株乳酸杆菌的分离鉴定与益生特性研究[J].中国饲料, 2018(11): 24-29.