研究报告

紫外-常压室温等离子体复合诱变高产纤维素酶真菌

  • 李豪 ,
  • 白光剑 ,
  • 吴静 ,
  • 杨海泉 ,
  • 邹伟
展开
  • 1四川轻化工大学 生物工程学院,四川 宜宾,644000
    2江南大学 生物工程学院,江苏 无锡,214122
硕士研究生(邹伟副教授为通讯作者,E-mail:weizou@suse.edu.cn)。

网络出版日期: 2019-09-03

基金资助

四川理工学院研究生创新基金项目(y2017043);四川省大学生创新创业训练计划项目(201710622036);自贡市科技局创新苗子工程项目(2018CXMZ02)

High cellulase-producing fungi by UV and ARTP mutagenesis

  • LI Hao ,
  • BAI Guangjian ,
  • WU Jing ,
  • YANG Haiquan ,
  • ZOU Wei
Expand
  • 1College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
    2School of Biotechnology, Jiangnan University, Wuxi 214122, China

Online published: 2019-09-03

摘要

该研究旨在通过复合诱变技术提高真菌产纤维素酶能力。以实验室前期菌株枝孢菌(Cladosporium)B03为出发菌株,经过紫外诱变和常压室温等离子体(atmospheric and room temperature plasma, ARTP)诱变处理,通过刚果红染色初筛和酶活复筛,最终得到产酶能力提高的突变菌株AY-42。较原始菌株相比,羟甲基纤维素(carboxy methyl cellulose, CMC)酶活提高36.14%,为(582.14±2.32)U/mL,滤纸酶(filter paper activity, FPA)酶活提高97.03%,为(92.27±0.23)U/mL。并且产酶能力能稳定遗传。该研究通过诱变技术提高枝孢菌B03的产酶能力,为菌株B03应用于纤维素酶生产奠定基础。

本文引用格式

李豪 , 白光剑 , 吴静 , 杨海泉 , 邹伟 . 紫外-常压室温等离子体复合诱变高产纤维素酶真菌[J]. 食品与发酵工业, 2019 , 45(15) : 81 -86 . DOI: 10.13995/j.cnki.11-1802/ts.020368

Abstract

The aim of this study was to improve the cellulase producing capability of fungi by compounded mutation. Cladosporium B03 was chosen as the starting strain, which was mutated by UV and atmospheric and room temperature plasma (ARTP), followed by Congo red staining screening and enzyme activity re-screening. The mutant strain (AY-42) with high enzyme production capacity was obtained. The CMCase and FPase activity of AY-42 were (582.14±2.32) U/mL and (92.27±0.23) U/mL, respectively, which increased by 36.14% and 97.03%, respectively, compared against those of B03. Additionally, the enzyme production capability of AY-42 was genetically stable. In conclusion, the enzyme production capacity of Cladosporium B03 can be improved by mutagenesis, which lays a foundation for applying Cladosporium B03 in cellulase production.

参考文献

[1] HIMMEL M E, DING S Y, JOHNSON D K, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production [J]. Science, 2007, 315(5 813): 804-807.
[2] 李豪, 邹伟,白光剑,等. 高产纤维素酶真菌的筛选及鉴定[J]. 食品与发酵工业,2019,45(6):54-58.
[3] SHU G, MAN H, WANG S, et al. Effect of some factors on production of cellulase by Trichoderma reesei HY07 [J]. Procedia Environmental Sciences, 2011, 8:357-361.
[4] GUPTA P, SAMANT K, SAHU A. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential [J]. International Journal of Microbiology, 2012(6): 578 925.
[5] CHIMTONG S, TACHAAPAIKOON C, PASON P, et al. Isolation and characterization of endocellulase-free multienzyme complex from newly isolated Thermoanaerobacterium thermosaccharolyticumstrain NOI-1 [J]. Journal of Microbiology & Biotechnology, 2011, 21(3): 284.
[6] KAUR J, CHADHA B S, SAINI H S. Regulation of cellulase production in two thermophilic fungi Melanocarpus sp. MTCC 3922 and Scytalidium thermophilum MTCC 4520 [J]. Enzyme & Microbial Technology, 2006, 38(7): 931-936.
[7] ZHANG Q, LO C M, JU L K. Factors affecting foaming behavior in cellulase fermentation by Trichoderma reesei Rut C-30 [J]. Bioresource Technology, 2007, 98(4): 753-760.
[8] 王洪媛, 范丙全. 三株高效秸秆纤维素降解真菌的筛选及其降解效果[J]. 微生物学报, 2010, 50(7): 870-875.
[9] NI J, TOKUDA G. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota [J]. Biotechnology Advances, 2013, 31(6): 838-850.
[10] 曾思泉, 凌娟,林丽云,等. 1株红树林来源枝孢属真菌的分离鉴定及纤维素酶性质分析[J]. 微生物学杂志, 2018, 38(2): 37-42.
[11] SWAIN M R, RAY R C. Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora [J]. Microbiological Research, 2009, 164(2): 121-130.
[12] 王芳. 里氏木霉的复合诱变及酶系优化[D]. 长沙:中南林业科技大学, 2015.
[13] MENG F, MA L, JI S, et al. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass [J]. Letters in Applied Microbiology, 2014, 59(3): 306-312.
[14] 戴剑漉, 张晓婷,卢智黎,等. 新型常压室温等离子体-紫外复合诱变选育埃莎霉素Ⅰ高产菌株[J]. 中国抗生素杂志, 2018, 43(2): 182-188.
[15] 周罗娜, 吴鑫颖,邱树毅,等. 常压室温等离子体快速诱变选育单宁酶高产黑曲霉菌株[J]. 食品科技, 2016, 41(7): 14-19.
[16] SANGWIJIT K, JITONNOM J, PITAKRATTANANUKOOL S, et al. Low-energy plasma immersion ion implantation modification of bacteria to enhance hydrolysis of biomass materials [J]. Surface & Coatings Technology, 2016, 306: 336-340.
[17] 秦艳飞, 余飞,朱振坤,等. 常压室温等离子(ARTP)诱变选育恩拉霉素高产菌株[J]. 食品与发酵科技, 2018, 54(3): 32-36.
[18] 李洋. 纤维素酶产生菌的筛选及产酶条件优化[D]. 大连:大连理工大学, 2015.
[19] 林晓琼, 孙旸,陈光,等. 常压室温等离子体快速诱变筛选高产纤维素酶生产菌株[J]. 吉林农业大学学报, 2016, 38(5): 543-547.
[20] LI Yanhong, ZHAO F K. Advances in cellulase research [J]. Chinese Bulletin of Life Sciences, 2005, 17(5):392-397.
[21] 蒋倩婷, 宋斌,闫文娟. 产纤维素酶菌株选育技术研究进展[J]. 江苏农业科学, 2011, 39(6): 584-587.
[22] IKE M, PARK J Y, TABUSE M, et al. Cellulase production on glucose-based media by the UV-irradiated mutants of Trichoderma reesei [J]. Applied Microbiology and Biotechnology, 2010, 87(6):2 059-2 066.
[23] 郭建强, 柴秀娟,庞学兵,等. 芽胞杆菌高产纤维素酶菌株的诱变选育与培养基优化[J]. 核农学报, 2017, 31(2): 263-270.
[24] EI-GHONEMY D H, ALI T H, EI-BONDKLY A M, et al. Improvement of Aspergillus oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state fermentation for the hyper-production of extracellular cellulase [J]. Antonie Van Leeuwenhoek, 2014, 106(5): 853-864.
[25] 陈丽燕, 张光祥,黄春萍,等. 两株高产纤维素酶细菌的筛选、鉴定及酶学特性[J]. 微生物学通报, 2011, 38(4): 531-538.
文章导航

/