生产与科研应用

冷磨橙皮油生产工艺中离心废水与精油的挥发性物质差异分析

  • ZHANG Qunlin ,
  • LI Guijie ,
  • CHENG Yujiao ,
  • HE Yajing ,
  • ROUSEFF R L ,
  • GU Liwei ,
  • WU Houjiu1 ,
  • 3* ,
  • SUN Zhigao
展开
  • 1 (西南大学 柑桔研究所,国家柑桔工程技术研究中心,重庆,400712)
    2 (重庆市功能性食品协同创新中心,重庆,400067)
    3 (佛罗里达大学 食品科学与人类营养系,美国,32611-0720)
张群琳硕士研究生和李贵节副教授为共同第一作者(孙志高副研究员和谷利伟副教授为共同通讯作者,E-mail:cpro@cric.cn;liweigu@cox.net)。

收稿日期: 2019-06-28

  网络出版日期: 2020-02-11

基金资助

国家柑桔工程技术研究中心开放课题(NCERC 2019004);“千人计划”高层次外国专家项目(WQ201350 00161);新型果蔬汁加工关键技术及装备研发(2017YFD0 400701-3)

Analysis of volatiles differences among aqueous effluents and essential oil from cold-pressing process of orange peel oil

  • 张群琳 ,
  • 李贵节 ,
  • 程玉娇 ,
  • 何雅静 ,
  • ROUSEFF R L ,
  • 谷利伟 ,
  • 吴厚玖 ,
  • 孙志高
Expand
  • 1 (Citrus Research Institute, Southwest University; National Citrus Engineering Research Center, Chongqing 400712, China)
    2 (Chongqing Collaborative Innovation Center for Functional Food, Chongqing 400067, China)
    3 (Department of Food Science and Human Nutrition, University of Florid, the United States, 326110720)

Received date: 2019-06-28

  Online published: 2020-02-11

摘要

通过对冷磨法生产甜橙皮精油关键步骤——油水分离的实验模拟,分析2次离心废水和冷磨油的挥发性有机物(volatile organic compounds, VOCs)差异,探讨废水VOCs的回收利用价值。采用顶空固相微萃取-气质联用技术结合保留指数和内标法进行定性和定量分析,从废水I、II和油中分别鉴定出75、72和63个VOCs,其中乙醇、(Z)-2-戊烯-1-醇、乙酸乙酯、2,3-丁二酮及(E)-2-戊烯醛等11个水易溶成分仅在废水中检出;共有成分的浓度均在冷磨油中更高,但以总体积计则废水中VOCs总含量更高;各VOCs所属香气类别在3类样品中的占比存在显著差异(P<0.01),废水I中花香和脂香(4.88%、3.37%)等类物质的比例高于废水II(2.34%、2.42%)和冷磨油(0.81%、1.08%)。离心废水保留了皮油的水溶性VOCs,从而更具花香、脂香和青香等特征,对其回收利用进行预期,可拓宽天然柑橘香料的产品线,并获取可观的经济效益。

本文引用格式

ZHANG Qunlin , LI Guijie , CHENG Yujiao , HE Yajing , ROUSEFF R L , GU Liwei , WU Houjiu1 , 3* , SUN Zhigao . 冷磨橙皮油生产工艺中离心废水与精油的挥发性物质差异分析[J]. 食品与发酵工业, 2019 , 45(23) : 214 -221 . DOI: 10.13995/j.cnki.11-1802/ts.021492

Abstract

By laboratory simulating oil-water separation, the key step of producing citrus peel essential oil by cold-pressing methods, the differences of volatile organic compounds (VOCs) in two consecutive aqueous effluents (AEs) and cold-pressed oil (CPO) were analyzed, and the recycling value of aqueous effluents VOCs was discussed. Techniques of headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) combined with retention index and internal standard method were used for qualitative and quantitative analysis. A total of 75, 72 and 63 VOCs were identified respectively in aqueous effluent I & II and the oil. Eleven components with high water solubility, including ethanol, (Z)-2-penten-1-ol, ethyl acetate, 2, 3-butanedione, (E)-2-pentenal and etc. were only found in the aqueous effluents. Concentration of common VOCs is higher in CPO; however, the total amount of VOCs in aqueous effluents was higher than that in CPO, considering the large volume of AEs. Significant differences (P<0.01) were found for the proportion of each aroma type of the VOCs among the three samples; percentage of VOCs that contributed mainly for floral and fat notes was higher in AE I (4.88%, 3.37%) than in AE II (2.34%, 2.42%) and CPO (0.81%, 1.08%). The more water-soluble VOCs from orange peel oil retained in aqueous effluents and characterized the AEs of more floral, fat and green notes. Recycling and reuse of these aqueous VOCs may broaden the products line of natural citrus essence and thus obtain substantial economic benefits.

参考文献

[1] SARROU E, CHATZOPOULOU P, DIMASSI-THERIOU K, et al. Volatile constituents and antioxidant activity of peel, flowers and leaf oils of Citrus aurantium L. growing in Greece[J]. Molecules, 2013, 18(9):10 639-10 647.
[2] MANFREDI K P. Review of citrus oils: composition, advanced analytical techniques, contaminants, and biological activity[J]. Journal of Natural Products, 2017, 80(4):1 229-1 229.
[3] 于童童, 范刚,任婧楠,等. 分子蒸馏分离浓缩甜橙精油及对赋香性能的影响[J]. 黑龙江大学自然科学学报, 2013, 30(6):802-808.
[4] MANCUSO M, CATALFAMO M, LAGANÀ P, et al. Screening of antimicrobial activity of citrus essential oils against pathogenic bacteria and Candida strains[J]. Flavour and Fragrance Journal, 2019, 34(3):187-200.
[5] PLASTINA P, et al. In vitro anti-inflammatory and radical scavenging properties of Chinotto (Citrus myrtifolia Raf.) essential oils[J]. Nutrients, 2018, 10(6): 783.
[6] WILLIMANN J A. Antimicrobial & antiviral composition: US 10307452[P]. 2019-06-04.
[7] LI G, WANG J, CHENG Y, et al., Prophylactic effects of polymethoxyflavone-rich orange peel oil on Nω-nitro-L-arginine-induced hypertensive rats[J]. Applied Sciences, 2018, 8(5):752.
[8] 赵文红, 白卫东,白思韵, 等. 柑橘类精油提取技术的研究进展[J]. 农产品加工(学刊), 2009(5):18-21;46.
[9] ASHURST P R. Handbook of citrus by-products and processing technology[J]. International Journal of Food Science & Technology, 2001, 36(4):450.
[10] 白雨佳, 张丽荣,黄佳琪, 等. 压榨法制备甜橙油的研究[J]. 食品工业, 2015, 36(7):87-90.
[11] BRAT P, REGA B, ALTER P, et al. Distribution of volatile compounds in the pulp, cloud, and serum of freshly squeezed orange juice[J]. Journal of Agricultural and Food Chemistry, 2003, 51(11):3 442-3 447.
[12] MOSHONAS M G, LUND E D, BERRY R E, et al. Distribution of aqueous aroma components in the orange[J]. Journal of Agricultural and Food Chemistry, 1972, 20(3):688-690.
[13] MOSHONAS M G, SHAW P E. Flavor and compositional comparison of orange essences and essence oils produced in the United States and in Brazil[J]. Journal of Agricultural and Food Chemistry, 1990, 38(3):799-801.
[14] MATTHEWS, RFBRADDOCK, RJTI. Recovery and applications of essential oil from orange[J]. Food Technology, 1987, 41(1):57-61.
[15] Flavor database [DB/OL]. Florda State, USA: Citrus Research and Education Center, University of Florida, 2002[2012-12-7]. http: / /www. crec. ifas. ufl. edu/crec_websites /Rouseff /Website2002 /Subpages /database_ f _ Frameset. html
[16] Flavornet and human odor space [DB/OL]. Geneva, NewYork, USA: Cornell University, 2004 [2012-12-07]. http: / /www. flavornet. org /flavornet. html
[17] LIU C, CHENG Y, ZHANG H, et al. Volatile constituents of wild citrus Mangshanyegan (Citrus nobilis Lauriro) peel oil[J]. Journal of Agricultural and Food Chemistry, 2012, 60(10):2 617-2 628.
[18] NJOROGE S M, KOAZE H, KARANJA P N, et al. Essential oil constituents of three varieties of Kenyan sweet oranges (Citrus sinensis)[J]. Flavour & Fragrance Journal, 2010, 20(1):80-85.
[19] BUETTNER A, SCHIEBERLE P. Evaluation of aroma differences between hand-squeezed juices from Valencia Late and Navel Oranges by quantitation of key odorants and flavor reconstitution experiments[J]. Journal of Agricultural and Food Chemistry, 2001, 49(5):2 387-2 394.
[20] 洪鹏, 陈峰,杨远帆,等. 三种柚子精油的香味特征及挥发性成分[J]. 现代食品科技, 2014,30(10):274-281.
[21] RADFORD T, KAWASHIMA K, FRIEDEL P K, et al. Distribution of volatile compounds between the pulp and serum of some fruit juices[J]. Journal of Agricultural and Food Chemistry, 1974, 22(6):1 066-1 070.
[22] 台亚楠, 董曼,任婧楠,等. 柠檬烯微生物转化的研究进展[J]. 食品科学, 2014, 35(17):272-277.
[23] 牛丽影, 吴继红,廖小军,等.不同类型橙汁挥发性风味成分的测定与比较[J].中国食品学报,2008, 1:119-124.
[24] 吴均, 杨德莹,李抒桐,等.甜橙精油的化学成分、抑菌和抗氧化活性研究[J].食品工业科技,2016,37(14):148-153.
[25] SEO W H, BAEK H H. Identification of characteristic aroma-active compounds from water dropwort (Oenanthe javanica DC.)[J]. Journal of Agricultural and Food Chemistry, 2005, 53(17):6 766-6 770.
[26] CICCHETTI, ESMRALDA, DUROURE L, et al. Characterization of odour-active compounds in Timur (Zanthoxylum armatum DC.) fruits from Nepal[J]. Flavor and Fragrance Journal, 2017,32:317-329.
[27] 肖作兵, 马胜涛,牛云蔚,等.气相色谱嗅闻技术结合主成分分析鉴定甜橙油特征香气成分[J]. 中国食品学报, 2017, 17(1):253-257.
[28] 吴曲阳. 不同品种宽皮柑橘果汁特征香气成分研究[D].上海:上海应用技术大学,2017.
[29] 乔宇. 柑橘汁香气活性化合物的鉴定及其在加工和储藏中的变化[D]. 武汉:华中农业大学, 2008.
文章导航

/