筛选出对植物乳杆菌RS66CD生物膜形成促进效果最显著的金属离子,确定生物膜形成最适培养条件,探究生物膜形成后对温度、pH、盐浓度和胆盐的耐受性。在培养基里添加Na+、Mn2+、Ca2+、Mg2+和Fe3+ 5种金属离子后,利用96孔法及扫描电镜测定生物膜形成量,选出最佳金属离子。对其添加量、培养温度和培养时间下生物膜形成的规律进行研究,确定了生物膜形成的最适条件。结果表明,Na+对生物膜形成具有明显促进效果。在NaCl质量浓度为53 g/L,40 ℃培养24 h时,生物膜的形成量最大。形成生物膜后的菌株对温度、pH、盐浓度和胆盐的耐受性均有明显提升。Na+可以促进植物乳杆菌生物膜的形成,在工业生产中,可以通过形成生物膜,使微生物在不良环境中保持活性。
The most effective metal ion was selected and the optimal culture condition was determined for RS66CD biofilm formation. The tolerance of biofilm to temperature, pH, salt concentration and bile salt was also studied. After adding Na+, Mn2+, Ca2+, Mg2+ and Fe3+, biofilm formation was determined by the 96-well method and SEM and then the best metal ion was selected. Under different ion concentrations, growth temperatures, and growth times, the biofilm formation was also studied to identify the optimal condition. The result showed that NaCl concentration of 53 g/L, the culture time of 24 h, and the culture temperature of 40 ℃ were the optimal condition for RS66CD biofilm formation. The environmental tolerance of strains after biofilm formation was improved. Na+ can promote the biofilm formation of Lactobacillus plantarum. In industrial production, microorganisms can be kept active by biofilms under stress condition.
[1] SAUER M, RUSSMAYER H, GRABHREE R,et al. The efficient clade: lactic acid bacteria for industrial chemical production[J]. Trends in Biotechnology, 2017, 35(8): 756-769.
[2] ANGMO K, KUMARI A, SAVRTRI A,et al. Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh[J]. LWT-Food Science and Technology, 2016, 66:428-435.
[3] MANCUSO C, SANTANGELO R. Alzheimer’s disease and gut microbiota modifications: The long way between preclinical studies and clinical evidence[J]. Pharmacological Research, 2018, 129:329-336.
[4] SCHREDER B O, BIRCHENOUGH G, STÃHLMAN M, et al. Bifidobacteria or fiber protects against diet-Induced microbiota-mediated colonic mucus deterioration[J]. Cell Host & Microbe, 2017, 23(1): 27-40.
[5] COSTERTON J W. The Biofilm Primer[M]. Springer Science & Business Media, 2007.
[6] FEMÁNDˇEZ RAMÍREZ, MÓNICA D, NIEROP GROOT M N, et al. Role of cell surface composition and lysis in static biofilm formation by, Lactobacillus plantarum, WCFS1[J]. International Journal of Food Microbiology, 2018, 271:15-23.
[7] KUBOTA H, SENDA S, TOKUDA H, et al. Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149[J]. Food Microbiology, 2009, 26(6): 592-597.
[8] KIEW T Y, CHEOW W S, HADINOTO K. Importance of biofilm age and growth medium on the viability of probiotic capsules containing Lactobacillus rhamnosus GG biofilm[J]. LWT-Food Science and Technology, 2014, 59(2): 956-963.
[9] SEALE B, BREMER P, FLINT S, et al. Overview of the problems resulting from biofilm contamination in the dairy industry[J] Biofilms in the Dairy Industry, 2015: 49-64.
[10] SCHÖNBORN S, KRÖMKER V. Detection of the biofilm component polysaccharide intercellular adhesin in Staphylococcus aureus, infected cow udders[J].Veterinary Microbiology, 2016, 196(30): 126-128.
[11] 王小燕, 陈颖,黄云超,等. 表皮葡萄球菌生物膜形成相关基因在表皮葡萄球菌和白假丝酵母菌混合生物膜形成中的作用研究[J]. 中国修复重建外科杂志, 2015, 29(1): 63-68.
[12] 赵佳伟, 敖晓琳,赵珂. 金属离子对乳酸菌生物膜形成的影响及其机制研究进展[J].食品科学, 2019, 40(9): 340-345.
[13] 张国丽, 彭瑶,魏露,等. 植物乳杆菌SCP53生物膜的形成条件[J]. 食品与发酵工业, 2017, 43(4):7-14.
[14] NAICKER P R, KARAYEM K, HOKEK K G, et al. Biofilm formation in invasive Staphylococcus aureus isolates is associated with the clonal lineage[J]. Microb Pathog, 2016, 90(2):41-49.
[15] 李平兰, 贺稚非.食品微生物学试验原理与技术[M]. 北京:中国农业出版社, 2005.
[16] 张国丽, 杨陈文,余茜.生物膜形成对植物乳杆菌PG3-1耐受性及功能基因表达的影响[J]. 食品与发酵工业, 2018, 44(5): 34-39.
[17] 任晓镤, 妥彦峰,李明杨,等.外界环境因素对戊糖乳杆菌生物膜形成的影响[J]. 农业机械学报, 2014, 45(11):230-234.
[18] MACHADO D, PALMEIRA-DE-OLIVEIRA A, CERCA N. Optimization of culture conditions for Gardnerella vaginalis biofilm formation[J]. Journal of Microbiological Methods, 2015, 118: 143-146.
[19] 司淼菲.植物乳杆菌直投式发酵剂制备及在发酵鱼中应用[D].哈尔滨:哈尔滨商业大学, 2015.
[20] NAICKER P R, KARAYEM K, HOKEK K G, et al. Biofilm formation in invasive Staphylococcus aureus isolates is associated with the clonal lineage[J]. Microb Pathog, 2016,90(2): 41-49.
[21] 谭杰, 董滨,戴晓虎. 温度对生物膜-活性污泥复合工艺硝化特性及硝化菌种群的影响[J].净水技术, 2016, 35(2): 21-25.
[22] RUI P Q, SÓNI GOUVEIA JORGE A S, et al. Impact of pH on the high-pressure inactivation of microbial transglutaminase [J]. Food Research International, 2019, 115:73-82.
[23] PAVONI J L, TENNEY M W, ECHELBERGER Jr W F. Bacterial exocellular polymers and biological flocculation[J]. Water Pollution Control Federation, 1972: 414-431.
[24] 张国丽. 植物乳杆菌SCP53生物膜形成条件及其耐受性研究[D]. 雅安:四川农业大学,2017.
[25] 徐文生,张艳艳,黄漫青.环境因素对长双歧杆菌CICC6069生物膜生成的影响[J]. 中国食品学报, 2012, 12(4):36-42.
[26] 谢丽斯, 张宏梅,刘学禄,等. 从腐败食品中分离的乳酸菌生物被膜形成的影响因素[J].食品与发酵工业, 2011, 37(3): 6-8.
[27] YONG L, JAN A M, LUONG T T, et al. Control of glucose-and NaCl-induced biofilm formation by rbf in Staphylococcus aureus[J]. Journal of Bacteriology, 2004, 186(3):722-729.
[28] VALLE J, VERGARAIRIGARAY M, MERINO N, et al. Regulates IS256-Mediated Staphylococcus aureus Biofilm phenotypic variation[J].Journal of Bacteriology,2007, 189(7):2 886.
[29] AKINBOBOLA A, SHERRY L, MCKAY W G, et al. Tolerance of, Pseudomonas aeruginosa, in in vitro biofilms to high level peracetic acid disinfection[J]. Journal of Hospital Infection, 2017, 97(2): 162-168.
[30] 黄忠强,韦雪菱.生物膜阳性致病菌对常用消毒剂耐受性研究[J].中华医院感染学杂志, 2011, 21(16):3 420-3 422.
[31] ACKER H V, DJJCK P V, Coenye T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms[J]. Trends in Microbiology, 2014, 22(6):326-333.