为获得稳定性好、包埋率高的蓝莓花青素微胶囊,以海藻酸钠作为壁材、蓝莓花青素为芯材制备花青素微胶囊,并分析了花青素微胶囊的稳定性和体外缓释性能。结果表明,花青素微胶囊的最佳制备工艺为:芯材和壁材体积比1∶2、海藻酸钠质量浓度1.5 g/100 mL、CaCl2质量浓度1.5 g/100 mL、针头孔径0.60 mm。此时其包埋率为90.16%,且微胶囊呈球状,表面光滑;制备的蓝莓花青素微胶囊具有良好的缓释作用,其在胃模拟液中持续释放2 h,释放率为25.17%,在模拟小肠液环境中可持续释放4 h,释放率达到89.26%。同时,微胶囊处理后的花青素对pH值和温度稳定性均有提高。因此,微胶囊包埋可以提高蓝莓花青素的稳定性和缓释作用,对蓝莓花青素的应用具有良好前景。
The present work was to obtain blueberry anthocyanin microcapsules with good stability and high embedding rate. Anthocyanin microcapsules were prepared by using sodium alginate as wall material and blueberry anthocyanin as core material; also, the stability and in vitro sustained release properties of anthocyanin microcapsules were analyzed. The results revealed the optimal preparation process conditions of blueberry anthocyanin microencapsulation, which was as follows: the ratio of core material to wall material volume was 1∶2, sodium alginate concentration was 1.5 g/100 mL, calcium chloride concentration was 1.5 g/100 mL, and needle diameter was 0.60 mm. Under this condition, the embedding rate reached up to 90.16%, while the microcapsule exhibited a spherical structure with smooth surface. The prepared blueberry anthocyanin microcapsules had good sustained release effects, which contributed to 2 h of release duration and 25.17% of release rate in gastric simulating solution as well as 4 h of release duration and 89.26% of release rate in small intestinal simulant solution. Moreover, the stability of the blueberry anthocyanin microcapsules on pH and temperature were both raised. These results indicate that microencapsulation helps improve the stability and sustained release of blueberry anthocyanins, and shows good application prospects.
[1] CAVALCANTI R N, SANTOS D T, MEIRELES M A A. Non-thermal stabilization mechanisms of anthocyanins in model and food systems-an overview[J]. Food Research International, 2011, 44(2): 499-509.
[2] 周笑犁, 夏雪冰,王瑞,等. 不同条件对蓝莓皮渣花色苷稳定性的影响[J]. 食品与发酵工业, 2017, 43(4): 192-196.
[3] 贾莹, 胡志和. 蓝莓饮料花青素稳定性研究[J]. 核农学报, 2016,30(5): 941-948.
[4] STEBBINS N B, HOWARD L R, PRIOR R L, et al. Stabilization of anthocyanins in blackberry juice by glutathione fortification[J]. Food & Function, 2017, 8(10): 3 459-3 468.
[5] LU M, LI Z, LIANG H, et al. Controlled release of anthocyanins from oxidized konjac glucomannan microspheres stabilized by chitosan oligosaccharides[J]. Food Hydrocolloids, 2015, 51: 476-485.
[6] GUO J, GIUSTI M M, KALETUNÇ G. Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: Impact of processing and storage parameters on encapsulation efficiency[J]. Food Research International, 2018, 107: 414-422.
[7] TAN C, SELIG M J, ABBASPOURRAD A. Anthocyanin stabilization by chitosan-chondroitin sulfate polyelectrolyte complexation integrating catechin co-pigmentation[J]. Carbohydrate Polymers, 2018, 181: 124-131.
[8] ATAY E, FABRA M J, MARTINEZ-SANZ M, et al. Development and characterization of chitosan/gelatin electrosprayed microparticles as food grade delivery vehicles for anthocyanin extracts[J]. Food Hydrocolloids, 2018, 77: 699-710.
[9] 陈虎, 王树林. 微胶囊包埋壁材对黑果枸杞花青素稳定性的影响[J]. 农产品质量与安全, 2017(4):40-43;48.
[10] 钱明雪, 潘利华,樊基胜,等. 蓝莓花青素微胶囊的包埋工艺[J]. 食品研究与开发, 2013, 34(24): 166-169.
[11] 龚银花, 刘悦,刘茜茜,等. 蓝莓花青素的提取、分离及微胶囊化研究[J]. 广州化工, 2015, 43(18): 69-71.
[12] 娄秋艳, 孙汉巨,王鑫,等. 黑米花青素微胶囊制备的工艺研究[J]. 食品安全质量检测学报, 2015, 6(6): 1 999-2 005.
[13] 王立爽, 蒋裕琪,于凤桐,等. 响应面法优化紫甘薯花青素微胶囊制备工艺[J]. 食品工业科技, 2017, 38(19): 191-196.
[14] 方坤, 李坚斌,魏群舒,等. 改性葡甘露聚糖/海藻酸钠微囊体外释药研究[J].食品与发酵工业, 2018, 44(12):86-91.
[15] 刘媛, 孙也,耿伟涛,等. 改性海藻酸钠乳酸菌微胶囊的制备及其体外性质研究[J]. 中国食品学报, 2018, 18(2):88-92.
[16] 杨艳,苏永建,付晓萍,等. 锐孔法制备表儿茶素微胶囊工艺优化[J].食品与发酵科技, 2017, 53(2):34-39.
[17] 屈小媛, 胡萍. 基于响应面法黑树莓果汁微胶囊化工艺优化[J]. 食品科学, 2012, 33(4): 91-95.
[18] HE B, GE J, YUE P, et al. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage[J]. Food Chemistry, 2017, 221: 1 671-1 677.
[19] 孟翔宇,赵彦巧,李钰琨,等.玫瑰茄花色苷微胶囊的制备及其稳定性与释放性的评价[J].食品工业科技, 2019,40(14): 174-181.
[20] 刘军波,邹礼根,赵芸.蓝莓花青素加工环境稳定性研究[J].食品与生物技术学报,2018,37(10): 1 073-1 079.