为增加酵母抽提物鲜度以更好地满足其在食品领域的需求,在10 L发酵罐水平研究了柠檬酸钠-糖蜜补料策略对酿酒酵母J-5生长及胞内谷氨酸合成的影响。糖蜜流加补料发酵中存在显著的溢流代谢,乙醇浓度(10 h)高达 22 g/L,干重和胞内谷氨酸分别达到36.36 g/L(21 h)和2.28%(质量分数)(18 h)。而3~14 h采用50 mL/h的初始速度流加糖蜜(体积1.8 L,含72 g柠檬酸钠)和每2 h流速增加50 mL的策略,能有效地减少碳溢流代谢,乙醇质量浓度(10 h)仅为对照的54.5%。同时,显著提高了胞内谷氨酸合成效率,其峰值含量达到了3.7%(质量分数)(11 h),比优化前提高了62.3%。该文确定了柠檬酸钠浓度/峰值菌体干重为0.238±0.007的优化参数,为工业化放大实验提供了参数依据。
In order to enhance the freshness of yeast extract to better meet its needs in food industries, the effects of sodium citrate-molasses feeding strategy on the growth and intracellular glutamate synthesis in Saccharomyces cerevisiae J-5 were studied at a 10 L fermenter level. During molasses-fed fermentation, there was a significant overflow metabolism, and the ethanol concentration reached 22 g/L in 10 h. Besides, the dry weight and intracellular glutamate reached 36.36 g/L in 21 h and 2.28% in 18 h, respectively. Adding 1.8 L molasses that contained 72 g sodium citrate from 3 h to 14 h at an initial rate of 50 mL/h with an increasing flow rate of 50 mL every 2 h, the carbon overflow metabolism was effectively reduced. Moreover, the ethanol concentration in 10 h was only 54.5% of the control. Furthermore, the intracellular glutamate synthesis efficiency significantly improved, and the peak content reached 3.7% in 11 h, which was 62.3% higher than that of the control. In addition, the parameter of citrate content/the maximal cell dry weight under the optimized condition was 0.238±0.007, which provides a reference for industrial scale-up experiments.
[1] 朱曼利, 郭会明,洪厚胜,等. 酵母抽提物的研究概况[J]. 中国调味品, 2017, 42(2):175-180.
[2] 洪镭, 汪晓伟,陈颖秋,等. 酵母抽提物鲜味剂的综述[J]. 轻工科技, 2010, 26(6):17-18.
[3] 林宗英, 林民山,郭霏霏. 纯天然酵母粉的制备与应用[J]. 现代食品, 2017(23):101-103.
[4] GOEL A, LEE J, DOMACH M M, et al. Metabolic fluxes, pools, and enzyme measurements suggest a tighter coupling of energetics and biosynthetic reactions associated with reduced pyruvate kinase flux.[J]. Biotechnology & Bioengineering, 1999, 64(2):129-134.
[5] 钱敏, 白卫东,赵文红,等. 酵母抽提物中游离氨基酸的测定与分析[J]. 现代食品科技, 2012, 28(7):878-881.
[6] MAGASANIK B. Ammonia assimilation by Saccharomyces cerevisiae[J]. Eukaryotic Cell, 2003, 2(5):827-829.
[7] 王燕, 宋香, 杨平平,等. 谷氨酸生产菌S9114中的谷氨酸脱氢酶的研究[J]. 生物工程学报, 2003, 19(6):725-729.
[8] BENNETZEN J L, HALL B D. The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase[J]. J biol chem, 1982, 257(6):3 018-3 025.
[9] KAJIHATA S, MATSUDA F, YOSHIMI M, et al. (13)C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced crabtree effect [J]. Journal of Bioscience & Bioengineering, 2015, 120(2):140-144.
[10] FAYYADKAZAN M, FELLAR A, BODO E, et al. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs [J]. Molecular Microbiology, 2016, 99(2):360-379.
[11] CUETOROJAS H F, SEIFAR R M, PIERICK A T, et al. In vivo analysis of NH+4 transport and central nitrogen metabolism in Saccharomyces cerevisiae during aerobic nitrogen-limited growth[J]. Applied & Environmental Microbiology, 2016, 82(23):6 831-6 845.
[12] 杜军, 刘辉,徐庆阳,等. 基于途径分析的L-谷氨酸发酵条件优化[J]. 食品与发酵工业, 2007, 33(11):9-12.
[13] 宋翔, 谢希贤,徐庆阳,等. 柠檬酸钠对L-谷氨酸发酵代谢流迁移的影响[J]. 天津科技大学学报, 2009, 24(2):5-8.
[14] LIAO J C, HOU S Y, CHAO Y P. Pathway analysis, engineering, and physiological considerations for redirecting central metabolism[J]. Biotechnology & Bioengineering, 1996, 52(1):129-140.
[15] 余秉琦. 谷氨酸棒杆菌的乙醛酸循环与L-谷氨酸合成[D]. 无锡:江南大学, 2005.
[16] 陈宁, 刘辉. 柠檬酸钠对L-亮氨酸发酵代谢流分布的影响[J]. 高校化学工程学报, 2008, 22(3):118-123.
[17] 刘新星, 陈双喜,储炬,等. 柠檬酸钠对枯草杆菌生长代谢及肌苷积累的影响[J]. 微生物学报, 2004, 44(5):627-630.
[18] 朱广跃, 杨卫,吴健,等. HPLC法定量分析微生物法制备液中产物γ-氨基丁酸和底物L-谷氨酸[J]. 食品科学, 36(24).
[19] 程勇, 陈玲,邓晓春. 柱前衍生HPLC法测定烟叶中20种游离氨基酸含量[J]. 烟草科技, 2010, 47(8):35-38.
[20] 申希峰, 黄杰涛,张莲姬. 蒽酮-硫酸法测定榛花多糖含量条件的优化[J]. 食品研究与开发, 2017, 38(18):150-154.
[21] 杜祎, 李敬龙,张金玲,等. 一种快速检测露酒中乙醇含量的新技术[J]. 酿酒科技, 2015(12):71-73.
[22] 王英臣, 安家彦. 酒精发酵的酵母比生长速率与代谢产物及底物的关系[J]. 酿酒, 2005, 32(1):28-30.
[23] 王亮. 酿酒酵母高浓度乙醇连续发酵体系振荡行为[D]. 大连:大连理工大学, 2014.
[24] 余秉琦, 沈微,王正祥,等. 谷氨酸棒杆菌的乙醛酸循环与谷氨酸合成[J]. 生物工程学报, 2005, 21(2):270-274.
[25] 汤佳鑫. 啤酒酵母在不同碳源条件下中间代谢途径关键酶活性分析[D]. 大连:大连工业大学, 2008.
[26] CORTASSA S, AON M A. Metabolic control analysis of glycolysis and branching to ethanol production in chemostat cultures of Saccharomyces cerevisiae, under carbon, nitrogen, or phosphate limitations[J]. Enzyme & Microbial Technology, 1994, 16(9):761-770.