研究报告

淀粉糊老化行为的粒子示踪微流变表征方法初探

  • 田缘 ,
  • 李双红 ,
  • 周韵 ,
  • 叶发银 ,
  • 赵国华
展开
  • 1 (西南大学 食品科学学院,重庆,400715)
    2 (重庆市甘薯工程技术研究中心,重庆,400715)
硕士研究生(赵国华教授为通讯作者,E-mail:zhaoguohua1971@163.com)。

收稿日期: 2019-03-04

  网络出版日期: 2019-10-24

基金资助

国家自然科学基金面上项目(31871837);国家自然科学基金青年科学基金项目(31601401);重庆市社会事业与民生保障科技创新专项(cstc2015shms-ztzx80006)

Preliminary investigation of a novel method for revealing retrogradationbehavior of starch paste by particle tracking microrheology

  • TIAN Yuan ,
  • LI Shuanghong ,
  • ZHOU Yun ,
  • YE Fayin ,
  • ZHAO Guohua
Expand
  • 1 (College of Food Science,Southwest University,Chongqing 400715,China)
    2 (Chongqing Sweet Potato Engneering and Technology Center,Chongqing 400715,China)

Received date: 2019-03-04

  Online published: 2019-10-24

摘要

为在不接触和破坏样品的情况下对淀粉糊流变行为进行表征,实现同一样品在不同老化时间的连续测定,该研究利用被动粒子示踪微流变(passive particle tracking microrheology, pptMR)连续表征淀粉糊在冷却及冷藏老化过程的流变及内部结构变化情况。研究发现,pptMR所给的弹性因子(elasticity index, EI)、流度因子(fluidity index, FI)和固液平衡值(solid-liquid balance, SLB)能很好地表征直链淀粉短期老化,相比之下,SLB区分度最好。宏观黏度因子(macroscopic viscosity index, MVI)能同时表征直链淀粉短期老化与支链淀粉长期老化。pptMR能通过弹性模量(G′)、损耗模量(G″)和损耗角正切(tanδ)反映淀粉糊冷却过程黏弹特性连续变化及凝胶转变点,也可对其长期老化进行表征。pptMR是一种潜在的淀粉老化行为连续表征方法,具有机械流变学无法比拟的优势,但需深入研究。

本文引用格式

田缘 , 李双红 , 周韵 , 叶发银 , 赵国华 . 淀粉糊老化行为的粒子示踪微流变表征方法初探[J]. 食品与发酵工业, 2019 , 45(17) : 79 -84 . DOI: 10.13995/j.cnki.11-1802/ts.20424

Abstract

In order to characterize the rheological nature of a starch paste in a non-contacting and non-destructive way along with its aging, passive particle tracking microrheology (pptMR) was used to evaluate rheological properties and inner structure of starch past during cooling and refrigeration. The results showed that pptMR derived elasticity index (EI), fluidity index (FI) and solid-liquid balance (SLB) could well characterize short-term retrogradation of amylose. In particular, SLB presented a higher resolution. On the other hand, macroscopic viscosity index (MVI) was effective to reflect short-term retrogradation of amylose and also long-term retrogradation of amylopectin. Moreover, pptMR derived elastic modulus (G′), loss modulus (G″) and loss tangent (tanδ) were good indicators of continuous changes in viscoelastic nature and sol-gel transition of starch paste upon cooling, which could also characterize long-term retrogradation of starch paste. In summary, pptMR is a potential method for continuously exploring cooling-induced aging events of starch paste, which has undoubtable advantages comparing against traditional mechanical rheology with further methodological investigation should be addressed in the future.

参考文献

[1] 王强,石爱民,刘红芝,等.食品加工过程中组分结构变化与品质功能调控研究进展[J].中国食品学报,2017,17(1):1-11.
[2] 李琳,李晓玺,陈玲,等.健康食品功能化理性设计制造的基础研究进展及其发展方向[J].华南理工大学学报(自然科学版),2012,40(10):69-76.
[3] DENG Jianjun,CHENG Jianjun,LIAO Xiayun,et al.Comparative study on iron release from soybean (Glycine max) seed ferritin induced by anthocyanins and ascorbate[J].Journal of Agricultural and Food Chemistry,2010,58(1):635-641.
[4] LI Meiliang,JIA Xiaoling,YANG Jingyun,et al.Effect of tannic acid on properties of soybean (Glycine max) seed ferritin:A model for interaction between naturally-occurring components in foodstuffs[J].Food Chemistry,2012,133(2):410-415.
[5] LYU Chenyan,ZHAO Guanghua,NING Yong.Interactions between plant proteins/enzymes and other food components, and their effects on food quality[J].Critical Reviews in Food Science and Nutrition,2017,57(8):1 718-1 728.
[6] WANG Mingwei,HAMER R J,VLIET T V,et al.Interaction of water extractable pentosans with gluten protein:Effect on dough properties and gluten quality[J].Journal of Cereal Science,2002,36(1):25-37.
[7] WANG Shujun, LI Caili, COPELAND L, et al. Starch retrogradation: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety, 2015, 14(5): 568-585.
[8] TABILO-MUNIZAGA G,GUSTAVO V,BARBOSA-CáNOVAS. Rheology for the food industry[J].Journal of Food Engineering,2005,67(1-2):147-156.
[9] HUANG Tao, TU Zongcai, WANG Hui, et al.Pectin and enzyme complex modified fish scales gelatin: Rheological behavior,gel properties and nanostructure[J].Carbohydrate Polymers,2017,156:294-302.
[10] 韩万友,董桂茹,屈玉玲,等.不同pH下低甲酯苹果果胶凝胶模型建立及基于流变学的凝胶机理分析[J].中国农业科学,2016,49(13):2 603-2 611.
[11] 曾瑞琪,张明政,张甫生,等.高酯果胶对酸化大豆蛋白凝胶流变及质构特性的影响[J].食品与发酵工业,2018,44(1):113-120.
[12] MOSCHAKIS T. Microrheology and particle tracking in food gels and emulsions[J].Current Opinion in Colloid & Interface Science,2013,18(4):311-323.
[13] 康万利,路遥,李哲,等.部分水解聚丙烯酰胺的微流变特性研究[J].石油与天然气化工,2015,44(4):75-78.
[14] LU J,CORVALAN C M.Soft food microrheology[J].Current Opinion in Food Science,2016,9:112-116.
[15] LI Chengliang, HE Lichao, MA Sumin, et al.Effect of irradiation modification on conformation and gelation properties of pork myofibrillar and sarcoplasmic protein[J].Food Hydrocolloids,2018,84:181-192.
[16] SUN Chanchan, WU Tao, LIU Rui,et al. Effects of superfine grinding and microparticulation on the surface hydrophobicity of whey protein concentrate and its relation to emulsions stability[J].Food Hydrocolloids, 2015, 51: 512-518.
[17] WAGNER C E,TURNER B S,RUBINSTEIN M, et al. A rheological study of the association and dynamics of MUC5AC gels[J].Biomacromolecules,2017,18:3 654-3 664.
[18] ZHANG Yan, LI Yuan, WANG Pengjie, et al.Rennet-induced coagulation properties of yak casein micelles:A comparison with cow casein micelles[J].Food Research International,2017,102:25-31.
[19] ZHU Qiaomei, QIU Shuang, ZHANG Hongwei, et al.Physical stability, microstructure and micro-rheological properties of water-in-oil-in-water (W/OW) emulsions stabilized by porcine gelatin[J].Food Chemistry, 2018, 253: 63-70.
[20] 康万利,于泱,杨红斌,等.基于微流变法的铬冻胶体系动态成胶过程测定[J].高分子材料科学与工程,2017,33(4):100-106.
[21] ZHANG Yanrong, KONG Xiangming, GAO Liang, et al.In-situ measurement of viscoelastic properties of fresh cement paste by a microrheology analyzer[J].Cement and Concrete Research,2016,79:291-300.
[22] 赵雄虎,韩斅,徐同台.微流变学研究钻井液静态黏弹性特征[J].钻井液与完井液,2015,32(1):7-9.
[23] AGUILERA J M.Why food microstructure?[J].Journal of Food Engineering,2005,67(1-2):3-11.
[24] CHEN Long, REN Fei, ZHANG Zipei, et al.Effect of pullulan on the short-term and long-term retrogradation of rice starch[J].Carbohydrate Polymers,2015,115:415-421.
[25] 程东,洪雁,庞艳生,等.交联和羟丙基改性对蜡质玉米淀粉糊化和流变性质的影响[J].食品与发酵工业,2016,42(3):18-23.
[26] PORFIRI M C, WAGNER J R. Extraction and characterization of soy hull polysaccharide-protein fractions.Analysis of aggregation and surface rheology[J].Food Hydrocolloids,2018,79:40-47.
[27] 王颖,罗志刚,罗发兴.瓜尔胶对木薯淀粉糊流变特性的影响[J].食品与发酵工业,2010,36(10):39-41.
[28] WANG Yanli, YUAN Chao, CUI Bo, et al.Influence of cations on texture, compressive elastic modulus,sol-gel transition and freeze-thaw properties of kappa-carrageenan gel[J].Carbohydrate Polymers,2018,202:530-535.
[29] 王骁男,于培志.聚丙烯酰胺衍生物凝胶体系的合成与光谱表征[J].光谱学与光谱分析,2015,35(3):730-733.
[30] XU Duoxia, ZHANG Jinjing, CAO Yanping, et al.Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion[J].LWT-Food Science and Technology,2016,66:590-597.
文章导航

/