为突破部分微生物在榨菜高盐环境难培养的局限,建立一种准确定量榨菜腌制过程中细菌和真菌数量的方法,并探讨动态变化过程。植物乳杆菌ATCC 8014的16S rRNA基因和酿酒酵母ATCC 9763的ITS基因分别与质粒载体连接作为标准参照物构建标准曲线,建立实时荧光定量PCR(real-time quantitative PCR, qPCR)方法,检测3个腌制时期腌制汁液中的细菌和真菌数量,同时检测理化指标。结果表明,所得qPCR标准曲线相关系数R2>0.99,扩增效率E均在95%~105%。腌制过程中,细菌和真菌分别在108.10~1010.43和105.29~107.75 copies/μL内变化,细菌在3个腌制阶段都有明显增殖,真菌仅在第3腌制阶段有明显增殖;腌制汁液中,pH值不断下降,NaCl的质量浓度和酸度主要在第2、3阶段先升高后下降。该结果为榨菜微生物过程控制提供参考数据。
In order to fast determine the whole microbial community in a high salt environment during the curing process of Zhacai (cured Tuber Mustard), a method for accurate quantification of all bacteria and fungi was developed. The 16S rDNA of Lactobacillus plantarum and the ITS of Saccharomyces cerevisiae cloned in a plasmid were used as standard references and a real-time quantitative PCR (qPCR) assay was established to detect the quantity of bacteria and fungi in brines during three curing periods. Besides, the physical and chemical indices of brine were also determined. The linear coefficients of the qPCR standard curves were greater than 0.99 and the amplification efficiencies were within 95%-105%. The pH value of the brine continuously decreased during the curing process. Whereas, the concentration of NaCl and acidity initially increased and then subsequently decreased during the second and third periods. Meanwhile, bacteria and fungi changed in the ranges of 108.10-1010.43 and 105.29-107.75 copies/μL, respectively. In addition, bacteria showed significant quantitative multiplication during all three curing periods while the count of fungi only increased during the third period. This study provides a reference for microbial control during Zhacai curing process
[1] 庞杰,向珣.涪陵榨菜的加工及生产现状[J].长江蔬菜, 1999(2): 42-44.
[2] 苏扬,张聪,王朝辉.榨菜加工工业及其发展战略的研究[J].食品科技,2010,35(4):114-119.
[3] 贺云川,周斌全,刘德君.涪陵榨菜传统工艺概述[J].食品与发酵科技, 2013,49(4):57-60.
[4] 王中凤,吴永娴,曾凡坤.榨菜风味形成机理及其影响因素[J].中国酿造, 1995, 14(1): 10-11.
[5] 袁美,韩彦慧,徐柯,等.机械脱水一次腌制榨菜在腌制过程中香气成分的变化[J].食品工业科技,2018,39(23):234-240.
[6] 阮祥林.涪陵榨菜腌制机理与味感[J].中国调味品, 1983(2): 9-12.
[7] 杨珺,吴永娴,曾凡坤.四川榨菜后熟时期微生物区系的研究[J].中国调味品, 2001(10): 18-20.
[8] 贾巍.榨菜后熟优势微生物分离鉴定及发酵剂研制[D].重庆:西南大学, 2008.
[9] 张先琴.PCR-DGGE技术分析传统发酵蔬菜中微生物群落结构[D].雅安:四川农业大学,2012.
[10] 李正国,付晓红,邓伟,等.传统分离培养结合DGGE法检测榨菜腌制过程的细菌多样性[J].微生物学通报,2009,36(3):371-376.
[11] 程海星,郭月英,任霆,等.实时荧光定量PCR技术原理及在食品检测中的应用[J].食品与发酵工业,2015,41(3):243-247.
[12] POSTOLLEC F, FALENTION H, PAVAN S, et al. Recent advances in quantitative PCR (qPCR) applications in food microbiology[J]. Food Microbiology, 2011, 28(5): 848-861.
[13] 张倩,叶可萍,关正萍,等.运用Real-time PCR方法建立大肠杆菌O157∶H7生长预测模型[J].中国食品学报,2017,17(9):203-212.
[14] 张亚豪,梁会朋,常聪,等.基于实时荧光定量PCR技术监测四川工业泡菜发酵过程中主要细菌的变化[J].中国调味品,2018,43(1):35-38;47.
[15] 王兴兴,丁梦帆,潘迎捷,等. 基于定量PCR方法初步分析西藏开菲尔粒中细菌与酵母菌数量变化[J]. 上海海洋大学学报, 2015, 24(4):625-631.
[16] 陶京兰,陆震鸣,王宗敏,等.实时荧光定量PCR监测镇江香醋醋酸发酵过程中微生物变化[J].食品与发酵工业,2013,39(2):156-160.
[17] SAMBROOK J, RUSSELL D W.分子克隆实验指南[M].北京:科学出版社,2002.
[18] YANG Jixia, CAO Jialu, XU Haiyan, et al. Bacterial diversity and community structure in Chongqing radish paocai brines revealed using PacBio single-molecule real-time sequencing technology [J]. Journal of the Science of Food and Agriculture, 2018, 98(9):3 234 - 3 245.
[19] 李娇洋,杨帆,包斌.叶类蔬菜贮藏中品质变化评价指标及其分析方法的研究进展[J].食品工业科技,2018,39(15):334-340.
[20] 许艺珊,何晶晶,陈婉娟,等.TA克隆技术的原理与应用[J].科技展望,2015,25(6):89-90.
[21] 王小花,李建祥,王国卿,等.SYBR Green实时荧光定量PCR检测大豆转基因成分[J].食品科学,2009,30(8):171-176.
[22] FREDLUND E, GIDLUND A, OLSEN M, et al. Method evaluation of Fusarium DNA extraction from mycelia and wheat for down-stream real-time PCR quantification and correlation to mycotoxin levels[J]. Journal of Microbiological Methods, 2008, 73(1):33-40.
[23] SUANTHIE Y, COUSIN M A, WOLOSHUK C P. Multiplex real-time PCR for detection and quantification of mycotoxigenic Aspergillus, Penicillium and Fusarium[J]. Journal of Stored Products Research, 2009, 45(2):139-145.
[24] 王香君,李梦茹,段杉.实时荧光定量PCR法定量微生物的条件及在鱼露和虾油微生物检测中的应用研究[J].食品与发酵工业,2018,44(2):194-201.