研究报告

硫模块启动子对提高L-甲硫氨酸的生物合成的影响及发酵培养条件的优化

  • 金利群 ,
  • 金伟熔 ,
  • 柳志强
展开
  • 1(浙江省生物有机合成技术研究重点实验室(浙江工业大学),浙江 杭州,310014)
    2(生物转化与生物净化教育部工程研究中心(浙江工业大学),浙江 杭州,310014)
    3(手性生物制造国家地方联合工程研究中心(浙江工业大学),浙江 杭州,310014)

修回日期: 2019-06-03

  网络出版日期: 2019-11-15

基金资助

国家自然科学基金项目(21602199)

Optimized promoter in sulfur assimilation module and fermentation condition enhanced L-methionine production

  • JIN Liqun ,
  • JIN Weirong ,
  • LIU Zhiqiang
Expand
  • 1(Key Laboratory of Bioorganic Synthesis of Zhejiang Province (Zhejiang University of Technology), Hangzhou 310014, China)
    2(Engineering Research Center of Bioconversion and Biopurification (Zhejiang University of Technology), Hangzhou 310014, China)
    3(National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals (Zhejiang University of Technology), Hangzhou 310014, China)

Revised date: 2019-06-03

  Online published: 2019-11-15

摘要

研究生物合成硫模块对L-甲硫氨酸产量的影响并优化了发酵条件。利用实验室构建的重组菌株,用trc启动子替换基因组上cysK的组成型启动子,在质粒pA*H上插入glpEnrdH基因;通过构建PG3启动子文库,获得转录强度最高的p32启动子,进一步优化硫模块,最后通过对培养基的优化提高了硫代硫酸盐的供给,从而提高L-甲硫氨酸产量。结果表明:使用构建得到的E. coli W3110 JAHFEBL trc-cysK/pA*H-p32-nrdH-glpE菌株,发酵48 h后L-甲硫氨酸摇瓶水平产量达到1.3 g/L,较对照组提升了41.5%;通过对培养基的进一步优化,L-甲硫氨酸产量最终达到2.3 g/L,相比未优化的发酵水平提高了77.0%,且该研究为其他含硫氨基酸的生物合成提供了基础。

本文引用格式

金利群 , 金伟熔 , 柳志强 . 硫模块启动子对提高L-甲硫氨酸的生物合成的影响及发酵培养条件的优化[J]. 食品与发酵工业, 2019 , 45(19) : 8 -16 . DOI: 10.13995/j.cnki.11-1802/ts.021127

Abstract

This study was conducted to increase the titer of L-methionine. The effects of sulfur module on L-methionine production were investigated, and the fermentation condition was optimized. The native promoter of cysK was replaced with trc promoter on the genome, and glpE and nrdH were co-expressed on plasmid pA*H. In order to further study the effects of strong promoter on L-methionine synthesis, the p32 promoter was obtained from the PG3 promoter library. The fermentation media was optimized to improve the supply of thiosulfate to increase the yield of L-methionine. After 48 h fermentation of the strain Escherichia coli W3110 JAHFEBL trc-cysK/pA*H-p32-nrdH-glpE, the titer of L-methionine was 1.3 g/L, which increased by 41.5% in comparison to that of the control. Using optimized medium, the titer of L-methionine reached 2.3 g/L, which was 77.0% higher than that before optimization. Therefore, this paper provides a basis for biosynthesising other sulfur-containing amino acids.

参考文献

[1] WILLKE T.Methionine production - a critical review[J]. Applied Microbiology and Biotechnology, 2014, 98(24): 9 893-9 914.
[2] 党万利, 金利群,郑裕国,等. 蛋氨酸生产工艺研究进展[J]. 食品与发酵工业, 2012, 38(4): 152-158.
[3] BECKER J, WITTMANN C.Systems and synthetic metabolic engineering for amino acid production-the heartbeat of industrial strain development[J]. Current Opinion in Biotechnology, 2012, 23(5): 718-726.
[4] GOMES J, KUMAR D.Production of L-methionine by submerged fermentation: A review[J]. Enzyme & Microbial Technology, 2005, 37(1): 3-18.
[5] 李华. 系统代谢工程改造大肠杆菌生产L-蛋氨酸[D]. 无锡:江南大学, 2017.
[6] HUANG J F, SHEN Z Y, MAO Q L, et al.Systematic analysis of bottlenecks in a multibranched and multilevel regulated pathway: The molecular fundamentals of L-methionine biosynthesis in Escherichia coli[J]. ACS Synthetic Biology, 2018, 7(11):2 577-2 589.
[7] NAKATANI T, OHTSU I, NONAKA G, et al.Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli[J]. Microbial Cell Factories, 2012, 11(1): 62.
[8] KAWANO Y, ONISHI F, SHIROYAMA M, et al.Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli[J]. Applied Microbiology & Biotechnology, 2017, 101(4): 1-11.
[9] MAIER T H P. Semisynthetic production of unnatural L-alpha-amino acids by metabolic engineering of the cysteine-biosynthetic pathway[J]. Nature Biotechnology, 2003, 21(4): 422-427.
[10] ARISTI P, ARNE H, ALEXIOS V G.Protein levels of Escherichia coli thioredoxins and glutaredoxins and their relation to null mutants, growth phase, and function[J]. Journal of Biological Chemistry, 2002, 277(21): 18 561-18 567.
[11] KAWANO Y, ONISHI F, SHIROYAMA M, et al.Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli[J]. Appl Microbiol Biotechnol, 2017, 101(18): 6 879-6 889.
[12] BOGICEVIC B.CysK from Lactobacillus casei encodes a protein with O-acetylserine sulfhydrylase and cysteine desulfurization activity[J]. Appl Microbiol Biotechnol, 2012, 94(5): 1 209-1 220.
[13] HRYNIEWICZ M M, KREDICH N M.Stoichiometry of binding of CysB to the cysJIH, cysK, and cysP promoter regions of Salmonella typhimurium[J]. Journal of Bacteriology, 1994, 176(12): 3 673.
[14] ZHANG C, SEOW V Y, CHEN X, et al.Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli[J]. Nat Commun, 2018, 9(1): 1 858.
[15] ZHANG C, CHEN X, LINDLEY N D, et al.A "plug-n-play" modular metabolic system for the production of apocarotenoids[J]. Biotechnol Bioeng, 2018, 115(1): 174-183.
[16] CLOMBURG J M, GONZALEZ R.Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology[J]. Appl Microbiol Biotechnol, 2010, 86(2): 419-434.
[17] REDDEN H, MORSE N, ALPER H S.The synthetic biology toolbox for tuning gene expression in yeast[J]. Fems Yeast Research, 2014, 15(1): 1.
[18] ZHOU S, DU G, KANG Z, et al.The application of powerful promoters to enhance gene expression in industrial microorganisms[J]. World Journal of Microbiology and Biotechnology, 2017, 33(2): 23.
[19] HUANG J F, LIU Z Q, JIN L Q, et al.Metabolic engineering of Escherichia coli for microbial production of L-methionine[J]. Biotechnology & Bioengineering, 2017, 114(4): 843.
[20] JIANG Y, CHEN B, DUAN C, et al.Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system[J]. Appl Environ Microbiol, 2015, 81(7): 2 506-2 514.
[21] JIAO S, LI X, YU H, et al.In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters[J]. Biotechnology & Bioengineering, 2017, 114(4): 832.
[22] 陈可泉, 马江锋,姜岷,等. 氮源对重组大肠杆菌发酵产L-精氨酸的影响[J]. 生物加工过程, 2011, 9(6): 11-14.
文章导航

/