以凡纳滨对虾虾头为研究对象,探究UV-C辐照对其主要内源酶的影响。用功率为30 W的UV-C紫外灯以20 cm高度、辐照20 min,处理虾头均浆液,检测内源酶酶活,分析比较辐照前后温度、pH对其内源酶酶活的影响规律。从虾头中检测出酸性及碱性蛋白酶、脂肪酶、几丁质酶和多酚氧化酶等酶活性;UV-C辐照前后,脂肪酶、几丁质酶的最适pH有所变化,脂肪酶最适pH由10变为6~10,几丁质酶最适pH由5变为6左右;各主要内源酶最适温度无明显变化;UV-C辐照后,在最适条件下酸性蛋白酶酶活升高23.99%,碱性蛋白酶升高37.49%,脂肪酶升高21.37%,几丁质酶升高37.70%,多酚氧化酶升高46.52%。结果显示,UV-C辐照对凡纳滨对虾虾头酸性及碱性蛋白酶、脂肪酶、几丁质酶和多酚氧化酶等主要内源酶均有激活作用。
The effects of UV-C irradiation on the enzymatic properties of main endogenous enzymes in shrimp head of Litopenaeus vannamei were studied. The homogenized shrimp head was irradiated with 30 W UV-C ultraviolet lamp at a height of 20 cm for 20 min. The effects of temperature and pH on the activities of endogenous enzymes before and after irradiation were analyzed and compared. The optimum pH of lipase and chitinase changed before and after UV-C irradiation, as the optimum pH of lipase changed from 10 to 6-10, and the optimum pH of chitinase changed from 5 to 6. The optimum temperature of the main endogenous enzymes did not change significantly. After UV-C irradiation and under the optimum conditions, the activities of acid protease, alkaline protease, lipase, chitinase and PPO increased by 23.99%, 37.49%, 21.37%, 37.70% and 46.52%, respectively. Therefore, it was concluded that UV-C irradiation can activate the main endogenous enzymes in Litopenaeus vannamei head.
[1] COWARD-KELLY G, AGBOGBO F K, HOLTZAPPLE M T.Lime treatment of shrimp head waste for the generation of highly digestible animal feed[J]. Bioresource Technology,2006,97(13):1 515-1 520.
[2] ZHAN Wenbin, WANG Xiaojie, CHEN Jing, et al.Elimination of shrimp endogenous alkaline phosphatase background and development of enzyme immunoassays for the detection of white spot syndrome virus (WSSV)[J]. Aquaculture, 2004, 239(1-4):15-21.
[3] 田申. 紫外辐照诱导虾头自降解的机制及其调控[D].湛江:广东海洋大学, 2016.
[4] SINHA R P, H Ä DER D P. UV-induced DNA damage and repair: a review[J]. Photochemical and Photobiological Sciences, 2002, 1(4): 225-236.
[5] 李程程. 南极黄丝瓜藓(Pohlia nutans)对强UV-C辐射的响应及其黄烷酮3-羟化酶的功能分析[D]. 济南:山东大学, 2018.
[6] 孙铭遥. 基于紫外诱导银杏叶次生代谢产物及其差异蛋白质组学研究[D].杭州:浙江大学, 2010.
[7] CAO Wenhong, TAN Caiyun, ZHAN Xiaojian, et al.Ultraviolet irradiation and gradient temperature assisted autolysis for protein recovery from shrimp head waste[J]. Food Chemistry, 2014,164:136-141.
[8] 曹文红,章超桦,洪鹏志,等.响应面法优化南美白对虾虾头自溶工艺的研究[J].中国食品学报, 2009, 9(1):158-164.
[9] 庄志凯. 凡纳滨对虾虾头内源蛋白酶分离纯化与酶学特性研究[D]. 湛江:广东海洋大学, 2011.
[10] HUBERT C, ANETA M, ANNA D, et al.A cold-adapted esterase from psychrotrophic Pseudoalteromas sp. strain 643A[J]. Archives of Microbiology, 2007, 188(1):27-36.
[11] 陈贵元. 低温脂肪酶的分离纯化及其酶学性质研究[D]. 昆明:昆明理工大学,2007.
[12] 尚宪明. 南极大磷虾脂肪酶提取纯化及其酶学性质研究[D]. 青岛:中国海洋大学, 2014.
[13] 王婧. 脊尾白虾几丁质酶的分离、特征及功能分析[D]. 北京:中国科学院大学, 2015.
[14] HUANG Wanyou, JI Hongwu, LIU Shucheng, et al.Inactivation effects and kinetics of polyphenol oxidase from Litopenaeus vannamei by ultra-high pressure and heat[J]. Innovative Food Science & Emerging Technologies, 2014, 26:108-115.
[15] PANADARE D, RATHOD V K.Extraction and Purification of Polyphenol Oxidase: A Review[J]. Biocatalysis and Agricultural Biotechnology, 2018,14:431-437.
[16] 陈丽娇,郑明锋,李怡宾.南美白对虾多酚氧化酶的生化特性[J].福建农业大学学报,2004, 33(3):377-380.
[17] 庄志凯,吉宏武.南美白对虾虾头内源酸性蛋白酶的分离纯化及其酶学特性研究[J].食品工业科技,2012,33(18):116-120.
[18] DADSHAHI Z, HOMAEI A, ZEINALI F, et al.Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Litopenaeus vanamei suitable for food and detergent industries[J]. Food Chemistry, 2016, 202:110-115.
[19] 沈文英,胡洪国,潘雅娟.温度和pH值对南美白对虾(Penaeus vannmei)消化酶活性的影响[J].海洋与湖沼,2004(6):543-548.
[20] GURUMALLESH P, ALAGU K, RAMAKRISHNAN B, et al.A systematic reconsideration on proteases[J]. International Journal of Biological Macromolecules,2019,128:245-267.
[21] 潘滨,谢月霞,戴君勇.凡纳滨对虾蛋白酶的分离纯化及生化特性[J].水产科学,2009,28(12):763-766.
[22] CAO Wenhong, ZHANG Chaohua, HONG Penzhi, et al.Autolysis of shrimp head by gradual temperature and nutritional quality of the resulting hydrolysate[J]. LWT- Food Science and Technology, 2009, 42(1):244-249.
[23] RIVERAPÉREZ C, DEL T M L, GARCÍACARREÑ O F. Purification and characterization of an intracellular lipase from pleopods of whiteleg shrimp (Litopenaeus vannamei)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2011, 158(1):99-105.
[24] ROCHA J,GARCIA-CARREÑO F L, MUHLIA-ALMAZÁN A, et al. Cuticular chitin synthase and chitinase mRNA of whiteleg shrimp Litopenaeus vannamei during the molting cycle[J]. Aquaculture,2012, 330-333:111-115.
[25] NIU Shengwen, YANG Linwei, ZUO Hongliang, et al.A chitinase from pacific white shrimp Litopenaeus vannamei involved in immune regulation[J]. Developmental & Comparative Immunology,2018,85:161-169.
[26] ZHOU Kaimin, ZHOU Falin, HUANG Jianhua, et al.Characterization and expression analysis of a chitinase gene (PmChi-4) from black tiger shrimp (Penaeus monodon) under pathogen infection and ambient ammonia nitrogen irradiation[J]. Fish & Shellfish Immunology,2017, 62:31-40.
[27] KONO M, MATSUI T, SHIMIZU C, et al.Purifications and some properties of chitinase from the liver of a prawn, Penaeus japonicus[J]. Journal of the Agricultural Chemical Society of Japan, 1990, 54(8):2 145-2 147.
[28] 李友宾.罗氏沼虾肝胰腺几丁质酶研究[J].重庆师范学院学报(自然科学版),2002,19(1):54-56;65.
[29] 吕敏,黄光华,杨慧赞,等.东海中华管鞭虾多酚氧化酶(PPO)的纯化及特性研究[J].现代食品科技,2018,34(11):138-144.
[30] CARVALHO J D O,ORLANDA J F F. Heat stability and effect of pH on enzyme activity of polyphenol oxidase in buriti (Mauritia flexuosa Linnaeus f.) fruit extract[J].Food Chemistry,2017,233:159-163.