[1] GIRHARD M, MACHIDA K, ITOH M, et al. Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system[J]. Microb Cell Fact, 2009, 8(1): 36.
[2] BEEKWILDER J, VAN HOUWELINGEN A, CANKAR K, et al. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene[J]. Plant Biotechnol J, 2014, 12(2): 174-182.
[3] LEONHARDT R H, BERGER R G. Nootkatone[J]. Adv Biochem Eng Biotechnol, 2015, 148: 391-404.
[4] FURUSAWA M, HASHIMOTO T, NOMA Y, et al. Highly efficient production of nootkatone, the grapefruit aroma from valencene by biotransformation[J]. Chemical and Pharmaceutical Bulletin, 2006, 53(11): 1 513-1 514.
[5] HARING H G, RIJKENS F, BOELENS H, et al. Olfactory studies on enantiomeric eremophilane sesquiterpenoids[J]. Journal of Agricultural and Food Chemistry, 1972, 20(5): 1 018-1 021.
[6] ZHU B C R, HENDERSON G, SAUER A M, et al. Structure-activity of valencenoid derivatives and their repellence to the Formosan subterranean termite[J]. Journal of Chemical Ecology, 2003, 29(12): 2 695-2 701.
[7] WRIESSNEGGER T, AUGUSTIN P, ENGLEDER M, et al. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris[J]. Metabolic Engineering, 2014, 24: 18-29.
[8] NEMMAR A, AL-SALAM S, BEEGAM S, et al.In vivo protective effects of nootkatone against particles-induced lung injury caused by diesel exhaust is mediated via the NF-κB pathway[J]. Nutrients, 2018, 10(3): 263.
[9] GUO X Y, SUN J, LI D, et al. Heterologous biosynthesis of (+)-nootkatone in unconventional yeast Yarrowia lipolytica[J]. Biochemical Engineering Journal, 2018, 137: 125-131.
[10] HONG B, LEBEUF R, DELBAERE S, et al. One-pot synthesis of (+)-nootkatone via dark singlet oxygenation of valencene: The triple role of the amphiphilic molybdate catalyst[J]. Catalysts, 2016, 6(12): 184-195.
[11] PALMER CARENO D M, RUTIAGA-QUINONES O M, CALVO J R R V, et al. Screening of microorganisms for bioconversion of (+)-valencene to (+)-nootkatone[J]. LWT-Food Science and Technology, 2015, 64(2): 788-793.
[12] CANKAR K, VAN HOUWELINGEN A, BOSCH D, et al. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene[J].FEBS Letter, 2011, 585(1): 178-182.
[13] EMMERSTORFER A, WIMMER-TEUBENBACHER M, WRIESSNEGGER T, et al. Over-expression of ICE2 stabilizes cytochrome P450 reductase in Saccharomyces cerevisiae and Pichia pastoris[J]. Biotechnol J, 2015, 10(4): 623-635.
[14] TAKAHASHI S, YEO Y S, ZHAO Y, et al. Functional characterization of premnaspirodiene oxygenase, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates[J]. Journal of Biological Chemistry, 2007, 282(43): 31 744-31 754.
[15] VAN EUNEN K, BAKKER B M. The importance and challenges of in vivo-like enzyme kinetics[J]. Perspectives in Science, 2014, 1(1): 126-130.
[16] HENRY K W, NICKELS J T, JOSEPH T, et al. ROX1 and ERG regulation in Saccharomyces cerevisiae: Implications for antifungal susceptibility[J]. Eukaryotic Cell, 2002, 1(6): 1 041-1 044.
[17] MONTANES F M, PASCUAL-AHUIR A, PROFT M. Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors[J]. Mol Microbiol, 2011, 79(4): 1 008-1 023.
[18] SOUZA C M, SCHWABE T M E, PICHLER H, et al. A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance[J]. Metab Eng, 2011, 13(5): 555-569.
[19] SCHOLTMEIJER K, CANKAR K, BEEKWILDER J, et al. Production of (+)-valencene in the mushroom-forming fungus S. commune[J]. Appl Microbiol Biotechnol, 2014, 98(11): 5 059-5 068.
[20] URBAN P, MIGNOTTE C, KAZMAIER M, et al. Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5[J]. The Journal of Biological Chemistry, 1997, 272(31): 19 176-19 186.
[21] DING Mingzhu, YAN Huifang, LI Linfeng, et al. Biosynthesis of taxadiene in Saccharomyces cerevisiae: Selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy[J].. PLoS One, 2014, 9(10): e109 348.
[22] LI Qian, SUN Zhiqiang, LI Jing, et al. Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering[J].. FEMS Microbiol Lett, 2013, 345(2): 94-101.
[23] FARHI M, MARHEVKA E, MASCI T, et al. Harnessing yeast subcellular compartments for the production of plant terpenoids[J]. Metab Eng, 2011, 13(5): 474-481.
[24] MA S M, GARCIA D E, REDDING-JOHANSON A M, et al. Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases[J]. Metab Eng, 2011, 13(5): 588-597.
[25] XIE Wenping, LV Xiaomei, YE Lidan, et al. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering[J]. Metab Eng, 2015, 30: 69-78.
[26] SCALCINATI G, KNUF C, PARTOW S, et al. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode[J].. Metab Eng, 2012, 14(2): 91-103.
[27] ASADOLLAHI M A, MAURY J, SCHALK M, et al. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2010, 106(1): 86-96.
[28] ENGELS B, DAHM P, JENNEWEIN S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production[J]. Metab Eng, 2008, 3-4(10): 201-206.
[29] PARTOW S, SIEWERS V, JORN S, et al. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae[J]. Yeast, 2010, 27(11): 955-964.
[30] XIONG L, ZENG Y, TANG R-Q, et al. Condition-specific promoter activities in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2018, 17(1): 58.
[31] LIAN J, MISHRA S, ZHAO H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications[J]. Metabolic Engineering, 2018, 50: 85-108.
[32] YAMADA R, TANAKA T, OGINO C, et al. Gene copy number and polyploidy on products formation in yeast[J]. Appl Microbiol Biotechnol, 2010, 88(4): 849-857.
[33] LIAN J, LI Y, HAMEDIRAD M,et al. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in saccharomyces cerevisiae[J]. Biochemistry and Bioengineering, 2014,111(8):1 521-1 531.
[34] CANKAR K, VAN HOUWELINGEN A, GOEDBLOED M, et al. Valencene oxidase CYP706M1 from Alaska cedar (Callitropsis nootkatensis)[J]. FEBS Letters, 2014, 588(6): 1 001-1 007.
[35] GAVIRA C, HOFER R, LESOT A, et al. Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae[J]. Metabolic Engineering, 2013, 18: 25-35.
[36] KRIVORUCHKO A, NIELSEN J. Production of natural products through metabolic engineering of Saccharomyces cerevisiae[J]. Curr Opin Biotechnol, 2015, 35: 7-15.