生产与科研应用

软包装虹鳟鱼片的微波巴氏杀菌工艺

  • 薛倩倩 ,
  • 栾东磊 ,
  • 刘宇昊 ,
  • 郭长凯 ,
  • 潘志海 ,
  • 胡蕾琪 ,
  • 陈莹莹 ,
  • 薛长湖
展开
  • 1(中国海洋大学 食品科学与工程学院,山东 青岛,266003);
    2(上海海洋大学 食品学院,上海,201306);
    3(上海海洋大学,食品热加工工程技术中心,上海,201306)
硕士研究生(薛长湖教授为通讯作者,E-mail:xuech@ouc.edu.cn)

收稿日期: 2019-05-21

  网络出版日期: 2019-12-20

基金资助

中华传统水产食品工业化加工关键技术(2016YFD04 00404);上海市浦江人才计划(17PJ1403300);上海市地方能力建设专项(16050502200)

Development of microwave pasteurization process for soft-packed Oncorhynchus mykiss fillet

  • XUE Qianqian ,
  • LUAN Donglei ,
  • LIU Yuhao ,
  • GUO Changkai ,
  • PAN Zhihai ,
  • HU Leiqi ,
  • CHEN Yingying ,
  • XUE Changhu
Expand
  • 1(Department of Food Science and Technology, Ocean University of China, Qingdao 266003, China);
    2(Department of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China);
    3(Engineering Research Center of Food Thermal Processing Technology, Shanghai Ocean University, Shanghai 201306, China)

Received date: 2019-05-21

  Online published: 2019-12-20

摘要

利用上海海洋大学自主研发的896 MHz微波杀菌系统,探究了6 cm×10 cm×2 cm虹鳟鱼片的微波巴氏杀菌工艺。以杀菌程度F90=10 min为目标,利用化学标记法分析了虹鳟鱼片在微波杀菌系统中的温度分布,确定了冷点位置;调整微波加热及保温时间以达到目标微波加热终温90 ℃、目标杀菌程度F90=10 min。结果表明,冷点位于(-25 mm,-20 mm)处。在微波净功率7 kW,加热时间2.67 min条件下,虹鳟鱼片最冷点温度从8.5 ℃升高到91.1 ℃,经95 ℃热水保温5 min后, F90=12.84 min。与热水杀菌相比,微波杀菌处理的总时间、冷点蒸煮值、表面蒸煮值分别减少了 58.15 %、30.01 %、58.33 %。微波杀菌处理大幅提高了杀菌食品品质,为生产高品质调理即食虹鳟鱼片提供了技术支持,为预包装鱼肉类食品的微波巴氏杀菌提供了实践基础。

本文引用格式

薛倩倩 , 栾东磊 , 刘宇昊 , 郭长凯 , 潘志海 , 胡蕾琪 , 陈莹莹 , 薛长湖 . 软包装虹鳟鱼片的微波巴氏杀菌工艺[J]. 食品与发酵工业, 2019 , 45(20) : 176 -181 . DOI: 10.13995/j.cnki.11-1802/ts.021153

Abstract

A microwave pasteurization process of Oncorhynchus mykiss fillet was explored using the 896 MHz microwave thermal processing system developed by Shanghai Ocean University. Chemical marker method was used to study the temperature distribution of the Oncorhynchus mykiss fillet in the microwave sterilization system, and the mobile metallic temperature sensor was conducted to determine the cold spot position and heat distribution. Subsequently, the heating time and the holding time of microwave process were adjusted to achieve the target thermal temperature of 90 °C and thermal processing level F90 of 10 min. The results showed that the cold point could be confirmed by chemical marking at (-25 mm, -20 mm). With the net microwave power of 7 kW and microwave heating time of 2.67 min,the temperature of the cold spot raised from 8.5 °C to 91.1 °C. After holding in hot water at 95 °C for 5 min, the F90 reached 12.84 min. Compared with hot water processing, the total time of microwave pasteurization, the cook value of cold spot and surface were reduced by 58.15 %, 30.01 % and 58.33 %, respectively. Microwave pasteurization can greatly improve the quality of sterilized food and provides technical support for production of high-quality prepared Oncorhynchus mykiss fillet, which provides a practical basis for microwave pasteurization of prepackaged fish meat products.

参考文献

[1] 崔忠付.2018年中国冷链物流回顾与2019年趋势展望[J].物流技术与应用,2019,24(S1):16-18.
[2] ECFF. Recommendations for the production of prepacked chilled food. [EB/OL].[2019-05-21]. https: //www. ecff.net/wp-content/uploads/2018/10/ECFF_Recommendations_2nd_ed_18_12_06-2.pdf.
[3] Food and Drug Administration. Fish and fishery products hazards and controls guidance[R]. US Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition, 2011.
[4] VERVOORT L, VANDER PLANCKE N I, GRAUWET T, et al. Thermal versus high pressure processing of carrots: A comparative pilot-scale study on equivalent basis[J]. Innovative Food Science & Emerging Technologies, 2012, 15(1):1-13.
[5] 李中朝. 食品的微波巴氏灭菌处理技术[J]. 食品工业科技, 1990(5):52-53.
[6] 涂桂飞,陈莹莹,胡蕾琪, 等. 基于美拉德反应的低温化学标记法[J]. 食品与发酵工业,2019,45(2):89-95.
[7] BORNHORST E R, TANG J, SABLANI S S, et al. Development of model food systems for thermal pasteurization applications based on Maillard reaction products [J]. LWT - Food Science and Technology, 2017, 75(1):417-424.
[8] BORNHORST E R, TANG J, SABLANI S S, et al. Thermal pasteurization process evaluation using mashed potato model food with Maillard reaction products[J]. LWT - Food Science and Technology, 2017, 82:454-463.
[9] AUKSORNSRI T, BORNHORST E R, TANG J, et al. Developing model food systems with rice based products for microwave assisted thermal sterilization[J]. LWT, 2018,96:551-559.
[10] WANG J, TANG J, LIU F, et al. A new chemical marker-model food system for heating pattern determination of microwave-assisted pasteurization orocesses[J]. Food and Bioprocess Technology, 2018,11(7):1 274-1 285.
[11] KIM H J, TAUB I A, CHOI Y M, et al. Principles and Applications of Chemical Markers of Sterility in High-Temperature— Short-Time Processing of Particulate Foods[M]. Acs Publication, 1996:54-69.
[12] PRKKASH A, KIM H J, TAUB I A. Assessment of microwave sterilization of foods using intrinsic chemical markers[J]. J Microw Power Electromagn Energy, 1997, 32(1):50-57.
[13] PANDIT R B, TANG J, LIU F, et al. A computer vision method to locate cold spots in foods in microwave sterilization processes[J]. Pattern Recognition, 2007, 40(12):3 667-3 676.
[14] ZHANG W, LIU F, NINDO C, et al. Physical properties of egg whites and whole eggs relevant to microwave pasteurization[J]. Journal of Food Engineering, 2013, 118(1):62-69.
[15] ZHANG W, LUAN D, TANG J, et al. Dielectric properties and other physical properties of low-acyl gellan gel as relevant to microwave assisted pasteurization process[J]. Journal of Food Engineering, 2015, 149:195-203.
[16] ZHANG W, TANG J, LIU F, et al. Chemical marker M2 (4-hydroxy-5-methyl-3(2H)-furanone) formation in egg white gel model for heating pattern determination of microwave-assisted pasteurization processing[J]. Journal of Food Engineering, 2014, 125:69-76.
[17] WANG Y, TANG J, RASCO B, et al. Using whey protein gel as a model food to study dielectric heating properties of salmon (Oncorhynchus gorbuscha) fillets [J]. LWT - Food Science and Technology, 2009, 42(6): 1 174-1 178.
[18] 丛海花. 水产品微波辅助杀菌过程中关键问题的解决及应用研究[D].青岛:中国海洋大学,2013.
[19] 贾敏. 介电特性在鲍鱼加工中的应用[D].青岛:中国海洋大学,2013.
[20] 贾敏,薛长湖,丛海花,等.频率和温度对鲍鱼介电特性的影响[J].食品工业科技,2012,33(18):182-185.
[21] 张文杰.扇贝在微波杀菌过程中介电特性的研究[D].青岛:中国海洋大学,2014.
[22] 张文杰,薛长湖,丛海花,等.915 MHz和2 450 MHz下扇贝柱介电特性的研究[J].食品工业科技,2014,35(1):74-77;82.
[23] LUAN D, TANG J, PEDROW P D, et al. Performance of mobile metallic temperature sensors in high power microwave heating systems [J]. Journal of Food Engineering, 2015, 149:114-122.
[24] LUAN D, TANG J, PEDROW PD, et al. Using mobile metallic temperature sensors in continuous microwave assisted sterilization (MATS) systems [J]. Journal of Food Engineering, 2013, 119(3): 552-560.
[25] TANG Z, MIKHAYLENKO G, LIU F, et al. Microwave sterilization of sliced beef in gravy in 7-oz trays [J]. Journal of Food Engineering, 2008, 89(4): 375-383.
[26] MUIDGETT R E. Microwave properties and heating characteristics of foods[J]. Food Technology,1992, 27: 153-157.
[27] 罗学兵,贺良明.草莓的营养价值与保健功能[J].中国食物与营养,2011,17(4):74-76.
[28] REDDY N R, TETZLOFF R C, SOLOMON H M, et al. Inactivation of Clostridium botulinum nonproteolytic type B spores by high pressure processing at moderate to elevated high temperatures[J]. Innovative Food Science & Emerging Technologies, 2006, 7(3):169-175.
文章导航

/