生产与科研应用

不同提取方法对橙皮果胶乳化特性的影响

  • 胡晓波 ,
  • 李梦圆 ,
  • 刘咏 ,
  • 王军辉
展开
  • 1 (合肥工业大学 食品与生物工程学院,安徽 合肥,230009)
    2 (功能性复合调味品安徽省重点实验室,安徽 界首,236500)
硕士研究生(刘咏教授为通讯作者,E-mail:liuyong@hfut.edu.cn)。

收稿日期: 2019-06-12

  网络出版日期: 2019-11-15

Effect of different extraction methods on emulsification properties ofpectins from orange peel

  • HU Xiaobo ,
  • LI Mengyuan ,
  • LIU Yong ,
  • WANG Junhui
Expand
  • 1 (School of Food and Biotechnology Engineering, Hefei University of Technology, Hefei 230009, China)
    2 (Anhui Key Laboratory of Functional Compound Seasoning, Jieshou 236500, China)

Received date: 2019-06-12

  Online published: 2019-11-15

摘要

以橙皮为原料采用顺序提取法(热缓冲溶液、螯合剂溶液、稀碱溶液和浓碱溶液)、酸提法和酶提法获得了6种不同性质的橙皮果胶:热缓冲液可溶性橙皮果胶(heat buffer soluble orange peel pectin, HBOP)、螯合剂可溶性橙皮果胶(chelating agent soluble orange peel pectin, CHOP)、稀碱可溶性橙皮果胶(dilute alkali soluble orange peel pectin, DAOP)、浓碱可溶性橙皮果胶(concentrated alkali soluble orange peel pectin, CAOP)、冷冻干燥后酸提取的橙皮果胶(acid extracted soluble orange peel pectin, AEOP)、冷冻干燥后酶处理提取的橙皮果胶(enzymatic extracted soluble orange, EEOP),研究了果胶浓度、pH、Ca2+浓度和温度变化对橙皮果胶乳化特性的影响。结果表明,CAOP的乳化活力和乳化稳定性随果胶浓度增加而提高,在果胶质量浓度为10 mg/mL时达到最大值,仅次于HBOP和CHOP;在pH值3~9或Ca2+摩尔浓度0.2~0.8 mol/L时,CAOP乳化活力始终高于0.05,且在pH 5时,乳化稳定性达到最大,为108 min;6种果胶在常温下均表现出较好的乳化活力和乳化稳定性;与其他果胶相比,CAOP具有较低的絮凝指数,FI≤279.09;并且CAOP的粒径很小,最大粒径仅为33.44 μm。综上,CAOP呈现出理想的乳化特性,可以成为食品乳化剂的理想替代品。

本文引用格式

胡晓波 , 李梦圆 , 刘咏 , 王军辉 . 不同提取方法对橙皮果胶乳化特性的影响[J]. 食品与发酵工业, 2019 , 45(21) : 187 -194 . DOI: 10.13995/j.cnki.11-1802/ts.021341

Abstract

The emulsification properties of pectins extracted from orange peel by different methods were investigated. Sequential extraction (thermal buffer solution, chelating agent solution, dilute alkali solution and concentrated alkali solution), acid extraction and enzyme extraction were used to obtain 6 different pectins from orange peel (HBOP, CHOP, DAOP, CAOP, AEOP and EEOP). The effects of pectin concentrations, pH, Ca2+ concentrations and temperature on emulsification properties of 6 pectins were studied. The emulsification activity and stability of CAOP was enhanced with the increase of pectin concentration, reaching the maximum at the concentration of 10 mg/mL, surpassed only by HBOP and CHOP. Besides, the emulsification activity of CAOP was always higher than 0.05 at any pH or Ca2+ concentration, and the maximal emulsion stability was 108 min at pH 5. The 6 different pectins showed good emulsifying activity and stability at room temperature. CAOP had lower flocculation index (FI) compared with other pectins (FI≤279.09), and had small droplet size, with the maximum of 33.44 ìm. In conclusion, CAOP exhibited ideal emulsification property, which can be used as a potential substitute for food emulsifier.

参考文献

[1] 叶兴乾. 柑橘加工与综合利用[M]. 北京中国轻业出版社, 2005
[2] HU Y T, TING Y, HU J Y, et al. Techniques and methods to study functional characteristics of emulsion systems[J]. Journal of Food and Drug Analysis, 2017, 25(1):16-26.
[3] LEROUX J, LANGENDORFF V, SCHICK G, et al. Emulsion stabilizing properties of pectin[J]. Food Hydrocolloids, 2003, 17(4):455-462.
[4] 刘佳, 张书文,宋广巍,等. 五种不同来源果胶类多糖的提取及其蛋白质稳定性测定[J]. 中国食品添加剂, 2016(5).
[5] CHEN J, CHENG H, WU D, et al. Green recovery of pectic polysaccharides from citrus canning processing water[J]. Journal of Cleaner Production, 2017, 144:459-469.
[6] SENGKHAMPARN N, SAGIS L M C, VRIES R D, et al. Physicochemical properties of pectins from okra (Abelmoschus esculentus (L.) Moench)[J]. Food Hydrocolloids, 2010, 24(1):35-41.
[7] VENZON S S, CANTERI M H G, GRANATO D, et al. Physicochemical properties of modified citrus pectins extracted from orange pomace [J]. Journal of Food Science & Technology, 2015, 52(7): 1-11.
[8] SHKODINA O G, ZELTSER O A, SELIVANOV N Y, et al. Enzymic extraction of pectin preparations from pumpkin[J]. Food Hydrocolloids, 1998, 12(3):313-316.
[9] SHI J J, ZHANG J G, SUN Y H, et al. Physicochemical properties and antioxidant activities of polysaccharides sequentially extracted from peony seed dreg[J]. International Journal of Biological Macromolecules, 2016,91:23-30.
[10] BAI L, HUAN S, LI Z, et al. Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum arabic, beet pectin, and corn fiber gum[J]. Food Hydrocolloids, 2017, 66:144-153.
[11] 陈益春,刘骞,姜帅. 氧化单宁酸提高含猪血浆蛋白水解物的乳状液物理稳定性[J]. 食品科学, 2018, 39(18): 42-47.
[12] 黄晓德, 钱骅,赵伯涛,等. 银耳粗多糖对桉叶油的乳化性研究[J]. 中国野生植物资源, 2014,33(1):9-11.
[13] MA F, ZHANG Y, YAO Y, et al. Chemical components and emulsification properties of mucilage from, Dioscorea opposita, Thunb[J]. Food Chemistry, 2017, 228:315-322.
[14] 顾楠, 张子沛,吴锦波,等. 不同处理方式对鹰嘴豆分离蛋白乳化性质的影响[J]. 食品工业科技, 2011(12):158-161.
[15] CLARK K M, GLANZ C E. Protein fractionation by precipitation with carboxymethyl cellulose [J]. ACS Simp Series, 1990 (419):170-187.
[16] 郭庆, 木泰华. 氯化钙对甘薯蛋白乳化特性的影响[J]. 中国农业科学, 2010, 43(11): 2 340-2 346.
[17] 苏现波, 尚会霞. 马铃薯淀粉废水蛋白的功能特性[J]. 食品科学, 2016, 37(17):115-120.
[18] DICKINSON E. Food emulsions and foams: Stabilization by particles [J]. Current Opinion in Colloid & Interface Science, 2010,15(1):40-49.
[19] 陈先鑫, 马晓雨,朱雯婷,等. 乳清蛋白乳液界面性质及其物理稳定性和氧化稳定性的研究[J]. 食品工业科技, 2016, 37(4): 155-159.
[20] 曲昊杨, 朱文学,刘琛,等. 苹果渣果胶提取工艺优化及碱法降酯效果评价[J]. 食品科学, 2014, 35(14):87-92.
[21] DONSÌ F, SESSA M, FERRARI G. Effect of emulsifier type and disruption chamber geometry on the fabrication of food nanoemulsions by high pressure homogenization [J]. Ind.Eng.Chem.Res, 2012,51(22):7 606-7 618.
[22] 梅新, 陈学玲,关健,等. pH对甘薯果胶乳化特性的影响[J]. 湖北农业科学, 2011, 50(24):5 226-5 229.
[23] CHEN H, JI A, QIU S, et al. Covalent conjugation of bovine serum album and sugar beet pectin through Maillard reaction/laccase catalysis to improve the emulsifying properties[J]. Food Hydrocolloids, 2018,76:173-183.
[24] NAKAUMA M, FUNAMI T, NODA S, et al. Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties[J]. Food Hydrocolloids, 2008, 22(7):1 254-1 267.
文章导航

/