综述与专题评论

智能包装在动物源性食品质量与安全监控中应用的研究进展

  • 李洪军 ,
  • 王俊鹏 ,
  • 贺稚非 ,
  • 李少博
展开
  • 1 (西南大学 食品科学学院,重庆,400715)
    2 (重庆市特色食品工程技术研究中心,重庆,400715)
李洪军教授和王俊鹏硕士研究生为共同第一作者(李洪军教授为通讯作者,E-mail:983362225@qq.com)。

收稿日期: 2019-05-26

  网络出版日期: 2019-11-15

基金资助

2017年国家自然科学基金项目(31671787);国家兔产业技术体系肉加工与综合利用(CARS-43-E-1)

Research progress on intelligent packaging in quality and safety monitoringof animal derived food products

  • LI Hongjun ,
  • WANG Junpeng ,
  • HE Zhifei ,
  • LI Shaobo
Expand
  • 1 (College of Food Science, Southwest University, Chongqing 400715, China)
    2 (Chongqing Engineering Research Center of Regional Food, Chongqing 400715, China)

Received date: 2019-05-26

  Online published: 2019-11-15

摘要

为提高动物源性食品的质量与安全,推动智能包装在食品加工产业中的商业化发展提供理论基础。该文系统总结了各类智能包装的功能特性、工作原理、优缺点以及在动物源性食品质量与安全监控中的最新研究成果。动物源性食品作为多元营养因子的载体,在贮藏和销售过程中容易发生腐败变质,威胁消费者的健康安全。利用智能包装可以实时监测食品在供应链中不同阶段的质量,显示食品真实的货架期,保障食品的安全性和可追溯性。随着智能包装技术的逐渐成熟,未来智能包装在提高动物源性食品的质量与安全,量化产品质量,减少食物浪费等方面有着良好的发展前景。

本文引用格式

李洪军 , 王俊鹏 , 贺稚非 , 李少博 . 智能包装在动物源性食品质量与安全监控中应用的研究进展[J]. 食品与发酵工业, 2019 , 45(21) : 272 -279 . DOI: 10.13995/j.cnki.11-1802/ts.021194

Abstract

The paper reviews theory of improving the quality and safety of animal derived foods as well as promoting the commercial development of intelligent packaging in the food processing industry. Based on extensive researches of domestic and international reports, the functional characteristics, operating principle, advantages and disadvantages of different types of intelligent packaging as well as the latest researches in the quality and safety monitoring of animal derived foods were systematically summarized. As a carrier of multi-nutritional factors, animal derived food is prone to deteriorate during storage and sale, which threatens the health and safety of consumers. Intelligent packaging can monitor the quality of food at different stages of the supply chain in real time, show the real shelf life, and ensure the safety and traceability. With the gradual maturity of intelligent packaging technology, intelligent packaging shows a promising prospect of development in improving the quality and safety of animal derived food, quantifying product quality, and reducing food waste in the future.

参考文献

[1] Food and Agriculture Organization of the United Nations. SAVE FOOD: Global initiative on food loss and waste reduction[R/OL]. (2012)[2019]. http://www.fao.org/save-food/resources/keyfindings/infographics/meat/en.
[2] 李雪,贺稚非,李洪军.可食性膜在肉及肉制品保鲜贮藏中的应用研究进展[J].食品与发酵工业, 2019, 45(2): 233-239.
[3] 李墨琳,罗欣,刘国星,等.活性包装对肉制品品质及货架期的影响研究进展[J].食品科学,2019, 40(11):313-320.
[4] YOUSEFI H, SU H M, IMANI S M, et al. Intelligent food packaging: A review of smart sensing technologies for monitoring food quality[J]. ACS Sensors, 2019, 4(4): 808-821.
[5] POYATOS-RACIONERO E, ROS-LIS J V, VIVANCOS J L, et al. Recent advances on intelligent packaging as tools to reduce food waste[J]. Journal of Cleaner Production, 2018, 172: 3 398-3 409.
[6] MÜLLER P, SCHMID M. Intelligent packaging in the food sector: A brief overview[J]. Foods (Basel, Switzerland), 2019, 8(1): 16.
[7] SALIU F, DELLA PERGOLA R. Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures[J]. Sensors and Actuators B: Chemical, 2018, 258: 1 117-1 124.
[8] LYU J S, CHOI I, HWANG K S, et al. Development of a BTB-/TBA+ ion-paired dye-based CO2 indicator and its application in a multilayered intelligent packaging system[J]. Sensors and Actuators B: Chemical, 2019, 282: 359-365.
[9] TIRTASHI F E, MORADI M, TAJIK H, et al. Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging[J]. International Journal of Biological Macromolecules, 2019, 136: 920-926.
[10] ZHAI X, LI Z, SHI J, et al. A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging[J]. Food Chemistry, 2019, 290: 135-143.
[11] European Food Safety Authority (EFSA). Guidelines on submission of a dossier for safety evaluation by the EFSA of active or intelligent substances present in active and intelligent materials and articles intended to come into contact with food[J]. EFSA Journal, 2009, 7(8): 1 208.
[12] HEISING J K, DEKKER M, BARTELS P V, et al. Monitoring the quality of perishable foods: opportunities for intelligent packaging[J]. Critical Reviews in Food Science and Nutrition, 2014, 54(5): 645-654.
[13] SOHAIL M, SUN D W, ZHU Z. Recent developments in intelligent packaging for enhancing food quality and safety[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(15): 2 650-2 662.
[14] 骆双灵,张萍,高德.肉类食品保鲜包装材料与技术的研究进展[J].食品与发酵工业,2019,45(4):220-228.
[15] GHAANI M, COZZOLINO C A, CASTELLI G, et al. An overview of the intelligent packaging technologies in the food sector[J]. Trends in Food Science & Technology, 2016, 51: 1-11.
[16] COSTA C, ANTONUCCI F, PALLOTTINO F, et al. A review on agri-food supply chain traceability by means of RFID technology[J]. Food and Bioprocess Technology, 2013, 6(2): 353-366.
[17] ALFIAN G, RHEE J, AHN H, et al. Integration of RFID, wireless sensor networks, and data mining in an e-pedigree food traceability system[J]. Journal of Food Engineering, 2017, 212: 65-75.
[18] EOM K H, HYUN K H, LIN S, et al. The meat freshness monitoring system using the smart RFID tag[J]. International Journal of Distributed Sensor Networks, 2014, 10(7): 591 812.
[19] DOBRUCKA R, CIERPISZEWSKI R. Active and intelligent packaging food-research and development-a review[J]. Polish Journal of Food and Nutrition Sciences, 2014, 64(1): 7-15.
[20] ZHANG Y, LIM L T. Colorimetric array indicator for NH3 and CO2 detection[J]. Sensors and Actuators B: Chemical, 2018, 255: 3 216-3 226.
[21] WON K, JANG N Y, JEON J. A natural component-based oxygen indicator with in-pack activation for intelligent food packaging[J]. Journal of Agricultural and Food Chemistry, 2016, 64(51): 9 675-9 679.
[22] 胡云峰,陈君然,贺业鑫,等.食品用CO2敏感型指示卡研究[J].中国粮油学报, 2015, 30(4):125-129.
[23] REALINI C E, MARCOS B. Active and intelligent packaging systems for a modern society[J]. Meat Science, 2014, 98(3):404-419.
[24] CHOI I, LEE J Y, LACROIX M, et al. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato[J]. Food Chemistry, 2017, 218:122-128.
[25] ZHAI X, SHI J, ZOU X, et al. Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring[J]. Food Hydrocolloids, 2017, 69:308-317.
[26] WANG S, LIU X, YANG M, et al. Review of time temperature indicators as quality monitors in food packaging[J]. Packaging Technology and Science, 2015, 28(10): 839-867.
[27] LEE H S, BAE D H. Changes in the shelf life of frozen pork patties containing 10 and 15 percent fat according to different storage temperatures[J]. British Food Journal, 2018, 120(1): 224-239.
[28] WAN X, KNOLL M. A new type of TTI based on an electrochemical pseudo transistor[J]. Journal of Food Engineering, 2016, 168: 79-83.
[29] 王琳,孟晶晶,李园锦,等.固定化糖化酶型时间-温度指示器在酸奶质量检测上的应用[J].包装学报, 2018, 10(1): 46-53.
[30] LLOBET E. Gas sensors using carbon nanomaterials: A review[J]. Sensors & Actuators B Chemical, 2013, 179:32-45.
[31] AHMED I, LIN H, ZOU L, et al. An overview of smart packaging technologies for monitoring safety and quality of meat and meat products[J]. Packaging Technology and Science, 2018, 31(7): 449-471.
[32] MA Q, DU L, WANG L. Tara gum/polyvinyl alcohol-based colorimetric NH3 indicator films incorporating curcumin for intelligent packaging[J]. Sensors and Actuators B: Chemical, 2017, 244: 759-766.
[33] HUANG X W, ZOU X B, SHI J Y, et al. Determination of pork spoilage by colorimetric gas sensor array based on natural pigments[J]. Food Chemistry, 2014, 145:549-554.
[34] SCHUMANN B, SCHMID M. Packaging concepts for fresh and processed meat-recent progresses[J]. Innovative Food Science & Emerging Technologies, 2018, 47: 88-100.
[35] KOSKELA J, SARFRAZ J, IHALAINEN P, et al. Monitoring the quality of raw poultry by detecting hydrogen sulfide with printed sensors[J]. Sensors and Actuators B: Chemical, 2015, 218: 89-96.
[36] LEE S Y, LEE S J, CHOI D S, et al. Current topics in active and intelligent food packaging for preservation of fresh foods[J]. Journal of the Science of Food and Agriculture, 2015, 95(14):2 799-2 810.
[37] PARK Y W, KIM S M, LEE J Y, et al. Application of biosensors in smart packaging[J]. Molecular and Cellular Toxicology, 2015, 11(3):277-285.
[38] BIJI K B, RAVISHANKAR C N, MOHAN C O, et al. Smart packaging systems for food applications: a review[J]. Journal of Food Science and Technology, 2015, 52(10): 6 125-6 135.
[39] KERRY J, BUTLER P. Smart packaging technologies for fast moving consumer goods[M]. New York: John Wiley & Sons, 2008: 111-127.
[40] MOHEBI E, MARQUEZ L. Intelligent packaging in meat industry: An overview of existing solutions[J]. Journal of Food Science and Technology, 2015, 52(7): 3 947-3 964.
[41] SHUKLA V, KANDEEPAN G, VISHNURAJ M R. Development of on-package indicator sensor for real-time monitoring of buffalo meat quality during refrigeration storage[J]. Food Analytical Methods, 2015, 8(6):1 591-1 597.
[42] KUSWANDI B, NURFAWAIDI A. On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness[J]. Food Control, 2017, 82:91-100.
[43] 郭素娟,卢士玲,李开雄,等.基于TTI的冷鲜羊肉新鲜度研究[J].食品工业科技,2014,35(13):112-116.
[44] PATEIRO M, BARBA F J, DOMÍNGUEZ R, et al. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review[J]. Food Research International, 2018, 113: 156-166.
[45] HOLMAN B W B, KERRY J P, HOPKINS D L. Meat packaging solutions to current industry challenges: A review[J]. Meat Science, 2018,144:159-168.
[46] RUKCHON C, NOPWINYUWONG A, TREVANICH S, et al. Development of a food spoilage indicator for monitoring freshness of skinless chicken breast[J]. Talanta, 2014, 130:547-554.
[47] WANG Y, ALOCILJA E C. Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens[J]. Journal of Biological Engineering, 2015, 9(1):16.
[48] KIM E, CHOI D Y, KIM H C, et al. Calibrations between the variables of microbial TTI response and ground pork qualities[J]. Meat Science, 2013, 95(2): 362-367.
[49] LUND M N, HEINONEN M, BARON C P, et al. Protein oxidation in muscle foods: A review[J]. Molecular Nutrition & Food Research, 2011, 55(1): 83-95.
[50] AMARAL A B, SILVA M V, LANNES S C S. Lipid oxidation in meat: mechanisms and protective factors-a review[J]. Food Science and Technology, 2018, 38: 1-15.
[51] SUMAN S P, JOSEPH P. Myoglobin chemistry and meat color[J]. Annual Review of Food Science and Technology, 2013, 4: 79-99.
[52] SAARINEN J J, REMONEN T, TOBJÖRK D, et al. Large-scale roll-to-roll patterned oxygen indicators for modified atmosphere packages[J]. Packaging Technology and Science, 2017, 30(5): 219-227.
[53] KHANKAEW S, MILLS A, YUSUFU D, et al. Multifunctional anthraquinone-based sensors: UV, O2 and time[J]. Sensors and Actuators B Chemical, 2016, 238:76-82.
[54] VANDERROOST M, RAGAERT P, DEVLIEGHERE F, et al. Intelligent food packaging: The next generation[J]. Trends in Food Science & Technology, 2014, 39(1): 47-62.
[55] MOHAMMED A, WANG Q. Multi-criteria optimization for a cost-effective design of an RFID-based meat supply chain[J]. British Food Journal, 2017, 119(3):676-689.
[56] FOO K L, HASHIM U, VOON C H, et al. Au decorated ZnO thin film: application to DNA sensing[J]. Microsystem Technologies, 2016, 22(4):903-910.
[57] Craemer. Storage And Transport Containers [P/OL]. (2014)[2019]. https://www.craemer.com/en/market-sectors/fish/
[58] PABLOS J L, VALLEJOS S, MUÑOZ A, et al. Solid polymer substrates and coated fibers containing 2, 4, 6-trinitrobenzene motifs as smart labels for the visual detection of biogenic amine vapors[J]. Chemistry-A European Journal, 2015, 21(24): 8 733-8 736.
[59] WU D, HOU S, CHEN J, et al. Development and characterization of an enzymatic time-temperature indicator (TTI) based on Aspergillus niger lipase[J]. LWT-Food Science and Technology, 2015, 60(2):1 100-1 104.
文章导航

/