综述与专题评论

不同预处理方法对改善麦类麸皮营养特性的研究进展

  • 王宝石 ,
  • 谭凤玲 ,
  • 李林波 ,
  • 李志刚 ,
  • 孙海彦 ,
  • 张明霞
展开
  • 1(河南科技学院 生命科技学院,现代生物育种河南省协同创新中心, 河南 新乡,453003);
    2(中国热带农业科学院热带生物技术研究所,海南省热带微生物资源重点实验室,海南 海口,570102)
博士,讲师(张明霞教授和王宝石博士为共同通讯作者,E-mail: zhangmingx@163.com; wangbaoshifsd@126.com)

收稿日期: 2019-12-16

  网络出版日期: 2020-02-02

基金资助

河南省博士后基金项目(1902043);农业农村部葡萄酒加工重点实验室开放课题 (KLVE201702);河南省科技计划项目(162102310419)

Advances in pretreatment methods for improving nutritional properties of wheat bran

  • WANG Baoshi ,
  • TAN Fengling ,
  • LI Linbo ,
  • LI Zhigang ,
  • SUN Haiyan ,
  • ZHANG Mingxia
Expand
  • 1(School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China);
    2(Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Haikou 570102, China)

Received date: 2019-12-16

  Online published: 2020-02-02

摘要

麦麸为面粉加工产业的副产物,富含多酚及多糖等活性成分,因其粗纤维含量高且难以被人体消化吸收,基本用作饲料,附加值非常低。近年来,全球新陈代谢疾病的威胁唤醒了更多人食用富含麸皮的天然食品,麸皮增值开发也逐渐成为研究的热点。该文从麦麸功能性营养组成,天然活性物质提取,面制品加工麸皮改性以及生物炼制等角度全面阐述了麦麸深加工的研究进展。未来麦麸的增值化利用需要依托现代固态发酵技术,挖掘我国传统酿造食品中有益微生物,以期为麸皮固态发酵提供丰富的菌种资源,结合混合发酵培养技术及发酵调控策略,进一步提升麸皮附加值。

本文引用格式

王宝石 , 谭凤玲 , 李林波 , 李志刚 , 孙海彦 , 张明霞 . 不同预处理方法对改善麦类麸皮营养特性的研究进展[J]. 食品与发酵工业, 2020 , 46(7) : 265 -270 . DOI: 10.13995/j.cnki.11-1802/ts.023093

Abstract

Wheat bran is a by-product in flour processing industry and is rich in bioactive ingredients such as polyphenols and polysaccharides. Due to high crude fiber content and difficulty in digestion and absorption by human being, wheat bran is basically used as animal feed with very low added value. Recently, the global threat of metabolic diseases has awakened more people to consume natural foods which are rich in bran, and the development of value-added bran has gradually become a research hotspot. This review expounds the progress in wheat bran processing from the perspectives of functional nutrient composition, extraction of natural active components, modification of bran products for processing wheat flour, and biological refining. The value-added utilization of wheat bran in the future relies on modern solid-state fermentation technology, and the probiotics used in Chinese traditional brewed foods represent a rich resource for candidate strains. With the use of mixed fermentation technology and fermentation control strategies, the added value of bran will be further elevated.

参考文献

[1] ZHAO H M, GUO X N, ZHU K X. Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran [J]. Food Chemistry, 2017, 217: 28-36.
[2] PRINSEN P, GUTIÉRREZ A, FAULDS C B, et al. Comprehensive study of valuable lipophilic phytochemicals in wheat bran [J]. Journal of Agricultural and Food Chemistry, 2014, 62(7): 1 664-1 673.
[3] LADDOMADA B, CARETTO S, MITA G. Wheat bran phenolic acids: Bioavailability and stability in whole wheat-based foods [J]. Molecules, 2015, 20(9): 15 666-15 685.
[4] SKENDI A, BILIADERIS C G, IZYDORCZYK M S, et al. Structural variation and rheological properties of water-extractable arabinoxylans from six Greek wheat cultivars [J]. Food Chemistry, 2011,126(2): 526-536.
[5] MESSIA M C, REALE A, MAIURO L, et al. Effects of pre-fermented wheat bran on dough and bread characteristics [J]. Journal of Cereal Science, 2016, 69: 138-144.
[6] GONG L, CHI H, WANG J, et al. In vitro fermentabilities of whole wheat as compared with refined wheat in different cultivars [J]. Journal of Functional Foods, 2019, 52: 505-515.
[7] GONG L, CAO W, CHI H, et al. Whole cereal grains and potential health effects: Involvement of the gut microbiota [J]. Food Research International, 2018, 103: 84-102.
[8] REISINGER M, TIRPANALAN Z, PRÜCKLER M, et al. Wheat bran biorefinery-A detailed investigation on hydrothermal and enzymatic treatment [J]. Bioresource Technology, 2013, 144: 179-185.
[9] ANTONIEWICZ M, KRAYNIE D, LAFFEND L, et al. Metabolic flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol [J]. Metabolic Engineering, 2007, 9(3): 277-292.
[10] ZHANG X, ZHANG M, DONG L, Lihong D, et al. Phytochemical profile, bioactivity, and prebiotic potential of bound phenolics released from rice bran dietary fiber during in vitro gastrointestinal digestion and colonic fermentation [J]. Journal of Agricultural and Food Chemistry, 2019, 67(46): 12 796-12 805.
[11] KIM K H, TSAO R, YANG R, et al. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions [J]. Food Chemistry, 2006, 95(3): 466-473.
[12] SHAN S, XIE Y, ZHAO H, et al. Bound polyphenol extracted from jujube pulp triggers mitochondria-mediated apoptosis and cell cycle arrest of HepG2 cell in vitro and in vivo [J]. Journal of Functional Foods, 2019, 53:187-196.
[13] 边媛媛. 小麦麸皮多酚化合物抗氧化活性研究 [D]. 无锡: 江南大学, 2015.
[14] KATINA K, ARENDT E, LIUKKONEN K H, et al. Potential of sourdough for healthier cereal products [J]. Trends in Food Science & Technology, 2005, 16(1): 104-112.
[15] ANTOINE C, PEYRON S, LULLIEN-PELLERIN V, et al. Wheat bran tissue fractionation using biochemical markers [J]. Journal of Cereal Science, 2004, 39(3): 387-393.
[16] 李秀利, 韩建春, 郭荣佳, 等. 大麦麸皮发酵液的体外抗氧化活性研究 [J]. 食品工业科技, 2014, 35(7): 112-115.
[17] DHILLON G S, BRAR S K, KAUR S, et al. Bioproduction and extraction optimization of citric acid from Aspergillus niger by rotating drum type solid-state bioreactor [J]. Industrial Crops & Products, 2013, 41(1): 78-84.
[18] 王宝石, 李林波, 谭凤玲, 等. 剪切力敏感型微生物形态塑造及其在柠檬酸发酵中的应用 [J]. 食品与发酵工业,2018, 44(12): 267-273.
[19] POSCH A E, HERWIG C, SPADIUT O, et al. Science-based bioprocess design for filamentous fungi [J]. Trends in Biotechnology, 2013, 31(1): 37-44.
[20] LETICIA C V, DOMINGO B M, MARÍA P L. Tailoring fungal morphology of Aspergillus niger MYA 135 by altering the hyphal morphology and the conidia adhesion capacity: biotechnological applications [J]. AMB Express, 2013, 3(1): 27-27.
[21] 殷娴. 黑曲霉高产柠檬酸机制及代谢调控研究 [D].无锡:江南大学, 2017.
[22] BHANJA T, KUMARI A, BANERJEE R. Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi [J]. Bioresource Technology, 2009, 100(11): 2 861-2 866.
[23] 杜小燕, 吴晖, 唐语谦, 等. 麦麸发酵前后不同存在形态酚类物质中酚酸含量的变化及其抗氧化活性分析 [J]. 中国粮油学报, 2016, 31(6): 17-23.
[24] XIE C Y, GU Z X, YOU X J, et al. Screening of edible mushrooms for release of ferulic acid from wheat bran by fermentation [J]. Enzyme and Microbial Technology, 2010, 46(2): 125-128.
[25] 尹志娜, 吴晖, 赖富饶, 等. 两种丝状真菌发酵小麦麸皮中酚酸的释放及与阿魏酸酯酶和木聚糖酶的关系 [J]. 现代食品科技, 2017, 33(3): 81-87.
[26] SCHMIDT C G, GONÇALVES L M, LUCIANA P, et al. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae [J]. Food Chemistry, 2014, 146: 371-377.
[27] WU J, JIN S, WU S, et al. Effect of filamentous fungi fermentation on the extractability and physicochemical properties of β-glucan in oat bran [J]. Food Chemistry, 2018, 254: 122-128.
[28] BEI Q, CHEN G, LIU Y, et al. Improving phenolic compositions and bioactivity of oats by enzymatic hydrolysis and microbial fermentation [J]. Journal of Functional Foods, 2018, 47: 512-520.
[29] 崔晨晓. 麸皮的发酵改性及其在馒头中的应用 [D].无锡: 江南大学, 2015.
[30] 李雪杰, 张剑, 郑文刚, 等. 小麦麸皮挤压加工对全麦粉面团及馒头的影响 [J]. 食品与发酵工业, 2020,46(5):.
[31] 渠琛玲, 刘胜强, 王若兰, 等. 全麦粉的微波稳定化工艺优化 [J]. 食品与发酵工业, 2016, 42(11): 121-125.
[32] SPAGGIARI M, RICCI A, CALANI L, et al. Solid state lactic acid fermentation: A strategy to improve wheat bran functionality [J]. LWT, 2020,118: 108 668.
[33] HORIE Y, GOTO A, IMAMURA R, et al. Quantification of ergothioneine in Aspergillus oryzae-fermented rice bran by a newly-developed LC/ESI-MS/MS method [J]. LWT, 2020,18: 108 812.
[34] CHU J, ZHAO H, LU Z, et al. Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto [J]. Food Chemistry, 2019, 294: 79-86.
[35] ZHANG H, ZHANG X, CAO X R, et al. Semi-solid state fermentation and enzymatic hydrolysis impeded the destroy of wheat bran on gluten polymerization [J]. LWT, 2018, 98: 306-313.
[36] PRÜCKLER M, LORENZ C, ENDO A, et al. Comparison of homo- and heterofermentative lactic acid bacteria for implementation of fermented wheat bran in bread [J]. Food Microbiology, 2015, 49: 211-219.
[37] AKTAS-AKYILDIZ E, MATTILA O, SOZER N, et al. Effect of steam explosion on enzymatic hydrolysis and baking quality of wheat bran [J]. Journal of Cereal Science, 2017, 78: 25-32.
[38] CODA R, KARKI I, NORDLUND E, et al. Influence of particle size on bioprocess induced changes on technological functionality of wheat bran [J]. Food Microbiology, 2014, 37: 69-77.
[39] WANG G, HUANG D, LI Y, et al. A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae [J]. Bioresource Technology, 2015, 180: 119-127.
[40] GERMEC M, OZCAN A, TURHAN I. Bioconversion of wheat bran into high value-added products and modelling of fermentations [J]. Industrial Crops and Products, 2019, 139:111 565.
[41] WOOD I P, COOK N M, WILSON D R, et al. Ethanol from a biorefinery waste stream: Saccharification of amylase, protease and xylanase treated wheat bran [J]. Food Chemistry, 2016, 198: 125-131.
[42] ALONSO E. The role of supercritical fluids in the fractionation pretreatments of a wheat bran-based biorefinery [J]. The Journal of Supercritical Fluids, 2018, 133: 603-614.
[43] FARKAS C, REZESSY-SZABÓ J M, GUPTA V K, et al. Microbial saccharification of wheat bran for bioethanol fermentation [J]. Journal of Cleaner Production, 2019, 240: 118 269.
[44] WANZENBÖCK E, APPRICH S, TIRPANALAN Ö, et al. Wheat bran biodegradation by edible Pleurotus fungi-A sustainable perspective for food and feed [J]. LWT, 2017, 86: 123-131.
[45] BENOIT-GELBER I, GRUNTJES T, VINCK A, et al. Mixed colonies of Aspergillus niger and Aspergillus oryzae cooperatively degrading wheat bran [J]. Fungal Genetics and Biology, 2017, 102: 31-37.
文章导航

/