研究报告

大肠杆菌高密度培养发酵L-色氨酸

  • 张震 ,
  • 熊海波 ,
  • 徐庆阳
展开
  • 1 (天津科技大学 生物工程学院,天津,300457)
    2 (代谢控制发酵技术国家地方联合工程实验室,天津,300457)
    3 (天津市氨基酸高效绿色制造工程实验室,天津,300457)
硕士研究生(徐庆阳副研究员为通讯作者,E-mail:xuqingyang@tust.edu.cn)。

收稿日期: 2019-08-20

  网络出版日期: 2020-02-11

基金资助

天津市科技攻关计划(14CZDSY00015)

L-tryptophan fermentation by high cell density culture of Escherichia coli

  • ZHANG Zhen ,
  • XIONG Haibo ,
  • XU Qingyang
Expand
  • 1 (College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China)
    2 (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China)
    3 (Tianjin Engineering Lab of Efficient and Green Amino Acid Manufacture, Tianjin 300457, China)

Received date: 2019-08-20

  Online published: 2020-02-11

摘要

为实现高水平的大肠杆菌高密度培养,提升发酵法产L-色氨酸的生产效率,以大肠杆菌 TRTH为供试菌株,在初始发酵工艺的基础上,先后对发酵接种量和底物KH2PO4添加量各设置4个梯度进行发酵对比试验,并着重考察了底物KH2PO4添加量对菌体生长、产酸、磷酸盐消耗、糖酸转化率及副产物积累的影响。试验结果表明,在接种量为20%(体积分数),底物KH2PO4添加量为10 g/L时,最高菌体密度达到65.39 g/L,最终L-色氨酸产量为59.55 g/L,分别较优化前提高了45.99%和31.17%,发酵延滞期明显缩短,菌体生长迅速,原料利用率大幅提高,主要副产物积累量较低,发酵总体水平达到最优。为大肠杆菌高密度培养在L-色氨酸发酵中的应用提供了一个成本低、可行性高的新策略,同时为L-色氨酸发酵生产中底物磷酸盐的调控提供了参考。

本文引用格式

张震 , 熊海波 , 徐庆阳 . 大肠杆菌高密度培养发酵L-色氨酸[J]. 食品与发酵工业, 2019 , 45(23) : 15 -20 . DOI: 10.13995/j.cnki.11-1802/ts.022033

Abstract

The purpose of this study was to achieve the high cell density cultivation of Escherichia coli and improve the efficiency of L-tryptophan production. E. coli TRTH was used as the L-tryptophan producer. The fermentation experiments were carried out with 4 different amounts of seed culture inoculum and KH2PO4. The effect of KH2PO4 addition on cell growth, acid production, phosphate consumption, sugar and acid conversion, and by-product accumulation were analyzed. The results showed that with 20% (V/V) inoculum and 10 g/L of KH2PO4 , the cell density reached the highest (65.39 g/L), with the final L-tryptophan yield being 59.55 g/L. Comparing with the results before optimization, the lag phase of the fermentation was significantly shorter, which means cell growth was quicker. The utilization rate of raw materials was greatly increased, and the accumulation of the by-products was lowered, thus, the overall level of fermentation was improved. This finding provides a highly feasible new strategy for lowering cost for the high cell density cultivation of E. coli in L-tryptophan fermentation application. At the same time, it provides a reference for the developing regulations for phosphate in L-tryptophan fermentation.

参考文献

[1] 张震, 熊海波,徐庆阳. L-色氨酸混菌发酵工艺[J]. 食品与发酵工业, 2019,45(14): 115-121.
[2] WANG J, HUANG J, SHI J, et al. Fermentation characterization of an L-tryptophan producing Escherichia coli strain with inactivated phosphotransacetylase [J]. Annals of Microbiology, 2013, 63(4): 1 219-1 224.
[3] ZHAO Z J, ZOU C, ZHU Y X, et al. Development of L-tryptophan production strains by defined genetic modification in Escherichia coli [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(12): 1 921-1 929.
[4] 刘莉娜. 大肠杆菌L-色氨酸生产菌株基因工程改造及代谢调控研究[D]. 无锡:江南大学, 2018.
[5] WANG J, CHENG L K, WANG J, et al. Genetic engineering of Escherichia coli to enhance production of L-tryptophan [J]. Applied Microbiology & Biotechnology, 2013, 97(17): 7 587-7 596.
[6] 徐皓, 李民,阮长庚,等. 高密度发酵生产突变型重组人肿瘤坏死因子rhTNFα-DK2的研究[J]. 工业微生物, 1998, (2): 20-25.
[7] RIESENBERG D. High-cell-density cultivation of Escherichia coli [J]. Current Opinion in Biotechnology, 1991, 2(3): 380-384.
[8] 黎鸿平, 黄海婵,钟卫鸿. 大肠杆菌高密度培养研究进展[J]. 化学与生物工程, 2012, 29(8): 1-5.
[9] BECKMANN B, HOHMANN D, EICKMEYER M, et al. An improved high cell density cultivation-iHCDC-strategy for leucine auxotrophic Escherichia coli K12 ER2507 [J]. Engineering in Life Sciences, 2017, 17(8): 857-864
[10] 陈理,俞昌喜. 重组大肠杆菌高密度发酵工艺进展[J]. 海峡药学, 2011, 23(3): 15-18.
[11] 程立坤, 黄静,秦永锋,等. 代谢副产物乙酸对L-色氨酸发酵的影响[J]. 微生物学通报, 2010, 37(2): 166-173.
[12] CURLESS C, BACLASKI J, SACHDEV R. Phosphate glass as a phosphate source in high cell density Escherichia coli fermentations [J]. Biotechnology Progress, 1996, 12(1): 22-25.
[13] 杨梦晨. L-色氨酸新型清液发酵工艺研究[D]. 天津:天津科技大学, 2018.
[14] 程立坤, 赵春光,黄静,等. 葡萄糖浓度对大肠杆菌发酵L-色氨酸的影响[J]. 食品与发酵工业, 2010, 36(3): 5-9.
[15] ZHAO C, CHENG L, XU Q, et al. Improvement of the production of L-tryptophan in Escherichia coli by application of a dissolved oxygen stage control strategy [J]. Annals of Microbiology, 2015, 66(2): 843-854.
[16] 李强,韩亚昆,蒋帅,等.代谢工程改造大肠杆菌合成反式-4-羟基-L-脯氨酸[J/OL].食品科学:1-13[2019-08-30].http://kns.cnki.net/kcms/detail/11.2206.TS.20190117.1029.012.html.
[17] 田康明, 尔昊,路福平,等. 磷酸盐精确控制策略提升大肠杆菌生长和产物合成效率[J]. 食品工业科技, 2016, 37(1): 184-189.
[18] 李会, 李莎,冯小海,等. Alcaligenes sp.NX-3产威兰胶的补料分批发酵工艺研究[J]. 食品与发酵工业, 2009, 35(1): 1-4.
[19] 胡爽, 蔡海波,蒋加庆,等. 重组大肠杆菌HT02高密度高表达HT-1融合蛋白发酵过程优化[J]. 化工学报, 2009, 60(12): 3 063-3 070.
[20] SHILOACH J, FASS R. Growing E. coli to high cell density-A historical perspective on method development [J]. Biotechnol Adv, 2005, 23(5): 345-357.
[21] ANANDAN P, PARTHIPAN G, PAZHANIVEL K, et al. Growth and characterization of potassium halides mixed L-arginine phosphate monohydrate semi organic nonlinear optical single crystals[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(1): 8-10.
[22] LAI S, ZHANG Y, LIU S, et al. Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production [J]. Science China Life Sciences, 2012, 55(4): 283-290.
[23] 赵春光, 谢希贤,徐庆阳,等. 磷酸盐对Escherichia coli TRJH L-色氨酸发酵代谢流分布的影响[J]. 天津科技大学学报, 2009, 24(5): 10-13;26.
文章导航

/