研究报告

植物乳杆菌CCFM8724对致龋双菌生物膜的抑制作用

  • 秦苏佳 ,
  • 徐晚晴 ,
  • 张秋香 ,
  • 赵建新 ,
  • 张灏 ,
  • 陈卫
展开
  • (江南大学 食品学院,江苏 无锡,214122)
硕士研究生(张秋香副教授为通讯作者,E-mail:zhangqx@jiangnan.edu.cn)

收稿日期: 2020-01-20

  网络出版日期: 2020-08-04

基金资助

国家重点研发计划资助项目( 2017YFD0400600)

Inhibitory effect of Lactobacillus plantarum CCFM8724 oncaries-causing dual biofilms

  • QIN Sujia ,
  • XU Wanqing ,
  • ZHANG Qiuxiang ,
  • ZHAO Jianxin ,
  • ZHANG Hao ,
  • CHEN Wei
Expand
  • (School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)

Received date: 2020-01-20

  Online published: 2020-08-04

摘要

变异链球菌(Streptococcus mutans)生物膜中白色念珠菌(Candida albicans)的存在会增强生物膜的致龋毒力,并导致与幼儿龋病(early childhood caries, ECC)相似的猖獗性龋病的发生。为验证植物乳杆菌(Lactobacillus plantarum)CCFM8724对变异链球菌和白色念珠菌双菌生物膜的体外抑制效果,在双菌生物膜形成的不同时期进行介导,采用结晶紫染色法、蒽酮硫酸法、平板计数法对介导后的生物膜进行评估,并用激光共聚集和扫描电镜对生物膜活死菌菌体和结构进行观察,最后测定CCFM8724对唾液包被羟基磷灰石(saliva-coated hydroxyapatite discs,SHA)的脱钙量和它对溶菌酶的耐受能力。结果表明,植物乳杆菌CCFM8724能显著降低双菌生物膜量、水不溶性胞外多糖的产量以及致病菌活菌数,并破坏生物膜的活性和结构。对SHA的脱钙情况有所缓解,对溶菌酶耐受质量浓度为1.6~2.0 mg/mL,说明CCFM8724具有成为防龋口腔益生菌的应用潜力。

本文引用格式

秦苏佳 , 徐晚晴 , 张秋香 , 赵建新 , 张灏 , 陈卫 . 植物乳杆菌CCFM8724对致龋双菌生物膜的抑制作用[J]. 食品与发酵工业, 2020 , 46(13) : 127 -132 . DOI: 10.13995/j.cnki.11-1802/ts.023436

Abstract

The presence of Candida albicans in dental plaque with Streptococcus mutans enhances the virulence leading to the onset of rampant caries which is similar to early childhood caries (ECC). In order to verify the inhibitory effect of Lactobacillus plantarum CCFM8724 on the dual biofilm which infected by S. mutans and C. albicans at different time points in vitro, the treated biofilms were assessed for crystal violet staining, anthrone-sulfuric method and colony forming unit (CFU) counting. The live/dead bacteria and structure of biofilm were observed by laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Finally, the decalcification of saliva-coated hydroxyapatite discs (SHA) after culture with CCFM8724 and the tolerance of lysozyme were determined. The results showed that L. plantarum CCFM8724 could significantly reduce the biomass of dual biofilm, the production of water-insoluble extracellular polysaccharide (EPS) and the CFU of pathogens. It also reduced the viability of biofilm and destroyed the structure of biofilm. Moreover, it alleviated the decalcification of SHA with the tolerance concentration to lysozyme 1.6-2.0 mg/mL. It is suggested that CCFM8724 has the potential to be used as an oral probiotic for caries prevention.

参考文献

[1] ANIL S, ANAND P S. Early childhood caries: prevalence, risk factors, and prevention [J]. Frontiers in Pediatrics, 2017, 5:157.
[2] CHEN K, GAO S, DUANGTHIP D, et al. Managing early childhood caries for young children in China; proceedings of the Healthcare[C]. Multidisciplinary Digital Publishing Institute, 2018, 6(1):11.
[3] SHEIHAM A, JAMES W P T. A new understanding of the relationship between sugars, dental caries and fluoride use: implications for limits on sugars consumption [J]. Public Health Nutrition, 2014, 17(10): 2 176-2 184.
[4] RAJA M, HANNAN A, ALI K. Association of oral candidal carriage with dental caries in children [J]. Caries Research, 2010, 44(3): 272-276.
[5] YANG X Q, ZHANG Q, LU L Y, et al. Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries [J]. Archives of Oral Biology, 2012, 57(8): 1 048-1 053.
[6] HWANG G, LIU Y, KIM D, et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo [J]. PLoS Pathogens, 2017, 13(6):e1006407.
[7] ELLEPOLA K, LIU Y, CAO T, et al. Bacterial GtfB augments Candida albicans accumulation in cross-kingdom biofilms [J]. Journal of Dental Research, 2017, 96(10): 1 129-1 135.
[8] FALSETTA M L, KLEIN M I, COLONNE P M, et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo [J]. Infection and Immunity, 2014, 82(5): 1 968-1 981.
[9] GUO L, MCLEAN J S, YANG Y, et al. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology [J]. Proceedings of the National Academy of Sciences, 2015, 112(24): 7 569-7 574.
[10] 饶瑞瑛, 任元雪, 李欣瑜, 等. 白及提取物抗变异链球菌致龋效果的研究 [J]. 中国微生态学杂志, 2018, 30(3): 291-295;299.
[11] PHILIP N, LEISHMAN S J, BANDARA H, et al. Polyphenol-rich cranberry extracts modulate virulence of Streptococcus mutans-Candida albicans biofilms implicated in the pathogenesis of early childhood caries [J]. Pediatric Dentistry, 2019, 41(1): 56-62.
[12] 王小玉, 王玉芝, 马丽, 等. 柠檬精油对变异链球菌及白假丝酵母菌生长及牙菌斑生物膜形成的抑制作用 [J]. 山东医药, 2017, 57(8): 47-49.
[13] 李贺. 芍药总多糖对口腔致龋细菌毒力因子作用的体外实验研究 [D]. 乌鲁木齐:新疆医科大学, 2013.
[14] CIANDRINI E, CAMPANA R, BAFFONE W. Live and heat-killed Lactobacillus spp. interfere with Streptococcus mutans and Streptococcus oralis during biofilm development on titanium surface [J]. Archives of Oral Biology, 2017, 78: 48-57.
[15] LIN X, CHEN X, TU Y, et al. Effect of probiotic Lactobacilli on the growth of Streptococcus mutans and multispecies biofilms isolated from children with active caries [J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2017, 23: 4 175.
[16] WU C C, LIN C T, WU C Y, et al. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation [J]. Molecular oral microbiology, 2015, 30(1): 16-26.
[17] 张妍. 抗龋齿益生菌性质及其作用机制的研究 [D]. 哈尔滨:东北农业大学, 2019.
[18] HASAN S, DANISHUDDIN M, KHAN A U. Inhibitory effect of zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies [J]. BMC Microbiology, 2015, 15(1): 1.
[19] REN Z, CUI T, ZENG J, et al. Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence [J]. Antimicrobial Agents and Chemotherapy, 2016, 60(1): 126-135.
[20] SHANG D, LIANG H, WEI S, et al. Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity [J]. Applied Microbiology and Biotechnology, 2014, 98(20): 8 685-8 695.
[21] ROSSONI R D, DOS SANTOS VELLOSO M, DE BARROS P P, et al. Inhibitory effect of probiotic Lactobacillus supernatants from the oral cavity on Streptococcus mutans biofilms [J]. Microbial Pathogenesis, 2018, 123: 361-367.
[22] BARBOSA J O, ROSSONI R D, VILELA S F G, et al. Streptococcus mutans can modulate biofilm formation and attenuate the virulence of Candida albicans [J]. PLoS One, 2016, 11(3):e0150457.
[23] 张秋香, 黄银, 姚沛琳, 等. 植物乳杆菌FB-T9抑制变异链球菌及其生物膜形成的研究 [J]. 食品与生物技术学报, 2019, 38(9): 17-26.
[24] NOBBS A H, LAMONT R J, JENKINSON H F. Streptococcus adherence and colonization [J]. Microbiol Mol Biol Rev, 2009, 73(3): 407-450.
[25] CUGINI C, SHANMUGAM M, LANDGE N, et al. The role of exopolysaccharides in oral biofilms [J]. Journal of Dental Research, 2019, 98(7): 739-745.
[26] ZHANG Q, QIN S, HUANG Y, et al. Inhibitory and preventive effects of Lactobacillus plantarum FB-T9 on dental caries in rats [J]. Journal of Oral Microbiology, 2020, 12(1): 1 703 883.
[27] MARSH P D,HEAD D A,DEVINE D A. Dental plaque as a biofilm and a microbial community-implications for treatment[J]. Journal of Oral Biosciences,2015,57(4): 185-191.
[28] METWALLI K H, KHAN S A, KROM B P, et al. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation [J]. PLoS pathogens, 2013, 9(10):e1003616.
[29] WIMPENNY J, MANZ W, SZEWZYK U. Heterogeneity in biofilms [J]. FEMS Microbiology Reviews, 2000, 24(5): 661-671.
[30] 王桢, 李阳, 车帅, 等. 北极海洋沉积物高抗氧化活性菌株的筛选及其多样性分析 [J]. 海洋科学进展, 2015, 33(1): 63-70.
文章导航

/