研究报告

超高压对乳清分离蛋白结构和抗氧化活性的影响

  • 庞佳坤 ,
  • 郑远荣 ,
  • 刘振民 ,
  • 包怡 ,
  • 陈森怡 ,
  • 党慧杰
展开
  • 1(乳业生物技术国家重点实验室,上海乳业生物工程技术研究中心,光明乳业股份有限公司乳业研究院,上海,200436);
    2(上海海洋大学 食品学院,上海,201306);
    3(上海大学 生命科学学院,上海,200444)
硕士研究生(刘振民教授级高级工程师为通讯作者,E-mail:liuzhenmin@brightdairy.com)

收稿日期: 2019-09-25

  网络出版日期: 2020-04-07

基金资助

:国家重点研发计划乳蛋白水解特异性研究及特定功能性乳制品开发(2018YFC1604205);上海乳业生物工程技术研究中心(19DZ2281400)

Effects of ultra-high pressure on structure and antioxidant activity of whey protein isolates

  • PANG Jiakun ,
  • ZHENG Yuanrong ,
  • LIU Zhenmin ,
  • BAO Yi ,
  • CHEN Senyi ,
  • DANG Huijie
Expand
  • 1(State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China);
    2(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China);
    3(College of Life Science, Shanghai University, Shanghai 200444, China)

Received date: 2019-09-25

  Online published: 2020-04-07

摘要

为了研究超高压处理对乳清分离蛋白结构的影响,该研究对乳清分离蛋白进行了不同条件的超高压处理,之后测定表面疏水性、傅里叶变换红外光谱、自由巯基含量和内源荧光光谱分析乳清分离蛋白的结构变化。与未经处理的乳清分离蛋白相比,200 MPa及以上压力显著提高了乳清分离蛋白的表面疏水性,在400 MPa-30 min时达到最大值。超高压处理使乳清分离蛋白的α-螺旋、β-折叠含量发生明显变化,证明了其对乳清分离蛋白二级结构的影响。超高压处理增加了蛋白自由巯基含量,在400 MPa-30 min时增加49%,并且超高压处理也引起了乳清分离蛋白内源荧光强度的显著变化。在所有的超高压处理条件中,400 MPa-30 min对乳清分离蛋白结构的影响最为显著,并显示出了最高的抗氧化活性。研究表明,超高压处理能显著改变乳清分离蛋白的二、三级结构,暴露出疏水基团等活性基团,从而对抗氧化活性产生影响。

本文引用格式

庞佳坤 , 郑远荣 , 刘振民 , 包怡 , 陈森怡 , 党慧杰 . 超高压对乳清分离蛋白结构和抗氧化活性的影响[J]. 食品与发酵工业, 2020 , 46(4) : 72 -77 . DOI: 10.13995/j.cnki.11-1802/ts.022365

Abstract

The study aimed to investigate the effects of ultra-high pressure (UHP) on the structure of whey protein isolates. To this end, whey protein isolates were treated with ultra-high pressure under different conditions, and any structural changes were analyzed by surface hydrophobicity, Fourier transform infrared spectrum, free sulfhydryl group content, and endogenous fluorescence spectra. Compared to the control group, the surface hydrophobicity of whey protein isolates significantly improved at 200 MPa and above, reaching a maximum value of 400 MPa-30 min. The content of the α-helix and β-sheet was found to change significantly, which proved its influence on the secondary structure of the whey protein isolates. UHP treatment increased the content of the protein-free sulfhydryl group by 49% at 400 MPa-30min, and UHP treatment also caused significant changes in the endogenous fluorescence intensity of the whey protein isolates. Among all the UHP treatment conditions, the 400 MPa-30 min value had the most significant effect on structure and showed the highest antioxidant activity. The results confirm that UHP treatment can significantly change the secondary and tertiary structures of whey protein isolates, exposing active groups like hydrophobic groups, thereby affecting antioxidant activity.

参考文献

[1] NORTON T,SUN D W. Recent Advances in the use of high pressure as an effective processing technique in the food industry[J]. Food & Bioprocess Technology, 2008, 1(1): 2-34.
[2] AMBROSI V,POLENTA G,GONZALEZ C, et al. High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins[J]. Innovative Food Science and Emerging Technologies, 2016, 38: 294-301.
[3] PAUL M,BREWSTER J D,VAN HEKKEN D L, et al. Measuring the antioxidative activities of queso fresco after post-packaging high-pressure processing[J]. Advances in Bioscience and Biotechnology, 2012, 3(4): 297-303.
[4] CHAWLA R,PATIL G R,SINGH A K. Hydrostatic pressure technology in dairy processing: A Review[J]. Journal of Food Science and Technology-mysore, 2011, 48(3): 260-268.
[5] KLEBER N,MAIER S,HINRICHS J. Antigenic response of bovine β-lactoglobulin influenced by ultra-high pressure treatment and temperature[J]. Innovative Food Science & Emerging Technologies, 2007, 8(1): 39-45.
[6] CONSIDINE T,PATEL H A,ANEMA S G, et al. Interactions of milk proteins during heat and high hydrostatic pressure treatments-a review[J]. Innovative Food Science & Emerging Technologies, 2007, 8(1): 1-23.
[7] KATO A,NAKAI S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins[J]. Biochimica Et Biophysica Acta, 1980, 624(1): 13-20.
[8] GINA C U M, PERREAULT V, HENAUX L, et al. Impact of a high hydrostatic pressure pretreatment on the separation of bioactive peptides from flaxseed protein hydrolysates by electrodialysis with ultrafiltration membranes[J]. Separation and Purification Technology, 2019, 211:242-251.
[9] ATHIRA S,MANN B,SAINI P, et al. Production and characterization of whey protein hydrolysate having antioxidant activity from cheese whey[J]. Journal of the Science of Food & Agriculture, 2015, 95(14): 2 908-2 915.
[10] BRAND-WILLIAMS W,CUVELIER M E,BERSET C. Use of a free radical method to evaluate antioxidant activity[J]. Lwt Food Sci Technol, 1995, 28(1): 25-30.
[11] YEN G C,DUH P D. Antioxidative properties of methanolic extracts from peanut hulls[J]. Journal of the American Oil Chemists’ Society, 1993, 70(4): 383-386.
[12] MOHAMED A,PETERSON S C,HOJILLA-EVANGELISTA M P, et al. Effect of heat treatment and ph on the thermal, surface, and rheological properties of lupinus albus protein[J]. Journal of the American Oil Chemists Society, 2005, 82(2): 135-140.
[13] CHEN H, MURAMOTO K, YAMAUCHI F, et al. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein[J]. Journal of Agricultural and Food Chemistry, 1998, 46(1): 49-53.
[14] LI H,ZHU K,ZHOUA H. Effects of high hydrostatic pressure treatment on allergenicity and structural properties of soybean protein isolate for infant formula[J]. Food Chemistry, 2012, 132(2): 808-814.
[15] HE X H,LIU H Z,LIU L, et al. Effects of high pressure on the physicochemical and functional properties of peanut protein isolates[J]. Food Hydrocolloids, 2014, 36(5): 123-129.
[16] SHRIVER S K,YANG W W. Thermal and nonthermal methods for food allergen control[J]. Food Engineering Reviews, 2011, 3(1): 26-43.
[17] STATHOPULOS P B, SCHOLZ G A, HWANG Y M, et al. Sonication of proteins causes formation of aggregates that resemble amyloid[J]. Protein Science, 2004, 13(11):3 017-3 027.
[18] CHAN K M, DECKER E A. Endogenous skeletal muscle antioxidants[J]. Critical Reviews in Food Science and Nutrition, 1994, 34(4): 403-426.
[19] HINRICHS,J,RADEMACHER B. High pressure thermal denaturation kinetics of whey proteins[J]. Journal of Dairy Research, 2004, 71(4): 480.
[20] JOSEFINA B,ROSA C,ROSINA L F. Unfolding and refolding of beta-lactoglobulin subjected to high hydrostatic pressure at different pH values and temperatures and its influence on proteolysisz[J]. Journal of Agricultural & Food Chemistry, 2007, 55(13): 5 282-5 288.
[21] ZHANG T,LV C,YUN S, et al. Effect of high hydrostatic pressure (HHP) on structure and activity of phytoferritin[J]. Food Chemistry, 2012, 130(2): 273-278.
[22] FLORENCE L, BENOIT F, THOMPSON J W, et al. Thermal denaturation and aggregation properties of atlantic salmon myofibrils and myosin from white and red muscles[J]. Journal of Agricultural & Food Chemistry, 2007, 55(12): 4 761-4 770.
[23] YIN Shouwei,TANG Chuanhe,WEN Qibiao, et al. Functional properties and in vitro trypsin digestibility of red kidney bean (phaseolus vulgaris L.) protein isolate: Effect of High-pressure Treatment[J]. Food Chemistry, 2008, 110(4): 938-945.
[24] CORRÊA A P,DAROIT D J,COELHO J, et al. Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease[J]. Journal of the Science of Food & Agriculture, 2011, 91(12): 2 247-2 254.
[25] ANDRÉS V,VILLANUEVA M J,TENORIO M D. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage[J]. Food Chemistry, 2016, 192: 328-335.
文章导航

/