该研究采用传统培养和Illumina MiSeq高通量测序技术相结合的方法对莽椒样品中的细菌多样性进行了解析。结果表明,17 株分离菌全部为乳酸菌,且16 株为乳杆菌。在门水平上,Firmicutes(硬壁菌门)和Proteobacteria(变形菌门)为绝对优势菌门,累计占比为99.39%;在属水平上,优势菌属为Lactobacillus(乳杆菌属,41.37%)、Pseudomonas(假单胞菌属,16.64%)、Weissella(魏斯氏菌属,14.96%)、Enterobacter(肠杆菌属,5.04%)、Pediococcus(片球菌属,2.48%)、Klebsiella(克雷伯氏菌属,2.40%)和Bacillus(芽孢杆菌属,1.33%)。从MG-RAST数据中下载湖北省当阳地区鲊广椒测序数据,进一步对莽椒和鲊广椒细菌多样性进行了分析。基因功能和表型结果表明,莽椒中细菌在生长繁殖等方面显著较低,而在革兰氏阴性菌和致病潜力的相对强度上显著较高。相关性检验发现优势细菌属对碳水化合物代谢、核酸代谢和蛋白质代谢等具有显著影响。由此可知该本研究对后续乳酸菌遗传多样性研究和产业化推动具有积极的意义。
In this study, the traditional culture method coupled with and Illumina MiSeq high-throughput sequencing technology were used to analyze the bacterial diversity in Mangjiao samples. The results showed that all the 17 isolated strains were lactic acid bacteria and 16 of which were characterized as Lactobacillus. At phylum level, Firmicutes and Proteobacteria were the dominant bacteria accounting for 99.39%. At genus level, the dominant bacteria were Lactobacillus (41.37%), Pseudomonas (16.64%), Weissella (14.96%), Enterobacter (5.04%), Pediococcus (2.48%), Klebsiella (2.40%) and Bacillus (1.33%). The sequencing data of Zhaguangjiao in Dangyang area Hubei province were downloaded from MG-RAST data, then the bacterial diversity of Mangjiao and Zhaguangjiao were compared and analyzed. The results of gene function and phenotype showed that the growth and reproduction of bacteria in Mangjiao was significantly lower, but the relative intensity of Gram-negative bacteria and pathogenic potential was significantly higher than Zhaguangjiao. The correlation test showed that the dominant bacteria in Mangjiao had significant effects on carbohydrate metabolism, nucleic acid metabolism and protein metabolism. This study played positive effect on the research of the genetic diversity and industrialization of lactic acid bacteria.
[1] 王玉荣, 代凯文, 沈馨, 等. 鲊广椒真菌多样性及其对滋味品质影响的评价[J]. 食品科学, 2018, 39(18): 173-178.
[2] 黄郑朝, 宋莲军, 黄现青, 等. 基于高通量测序对中国不同区域传统发酵香肠细菌多样性的研究[J]. 食品与发酵工业, 2019, 45(18): 15-21.
[3] 高庆超, 常应九, 马蓉, 等. 黑果枸杞酵素自然发酵过程中微生物群落的动态变化[J]. 食品与发酵工业, 2019, 45(13): 126-133.
[4] SCHIRMER M, IJAZ U Z, D'AMORE R, et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform[J]. Nucleic Acids Research, 2015, 43(6): e37-e37.
[5] QUAIL M A, SMITH M, COUPLAND P, et al. A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers[J]. BMC Genomics, 2012, 13(1): 341.
[6] 王玉荣, 沈馨, 董蕴, 等. 鲊广椒细菌多样性评价及其对风味的影响[J]. 食品与机械, 2018, 34(4): 25-30.
[7] 雷炎, 马佳佳, 雷敏, 等. 恩施鲊广椒乳酸菌的分离鉴定及其对挥发性风味物质的影响[J]. 中国酿造, 2019, 38(7): 126-130.
[8] 向凡舒, 王玉荣, 葛东颖, 等. 湖北夷陵地区鲊广椒中乳酸菌的分离鉴定及其对产品品质的影响[J]. 食品科技, 2019, 44(4): 23-29.
[9] 王玉荣, 杨成聪, 葛东颖, 等. 扩增区域对鲊广椒细菌MiSeq测序的影响[J]. 食品科学, 2019, 40(10): 134-140.
[10] 向凡舒, 折米娜, 何萌, 等. 基于DGGE和Illumina MiSeq技术解析恩施地区米酒细菌多样性[J]. 食品与发酵工业, 2019, 45(14): 41-46;62.
[11] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.
[12] ZHANG Y, ALEKSEYENKO A V. Phylogenic inference using alignment-free methods for applications in microbial community surveys using 16s rRNA gene[J]. PloS One, 2017, 12(11): e0 187 940.
[13] VU D, GEORGIEVSKA S, SZOKE S, et al. fMLC: Fast multi-level clustering and visualization of large molecular datasets[J]. Bioinformatics, 2017, 34(9): 1 577-1 579.
[14] MAJANEVA M, HYYTIÃINEN K, VARVIO S L, et al. Bioinformatic amplicon read processing strategies strongly affect eukaryotic diversity and the taxonomic composition of communities[J]. PLoS One, 2015, 10(6): e0 130 035.
[15] BALVOČIU-TÉ M, HUSON D H, SILVA R D P,et al. Greengenes, NCBI and OTT—How do these taxonomies compare?[J]. BMC Genomics, 2017, 18(2): 114.
[16] BUI H Q, LA C N H, DO M N. A fast tree-based algorithm for compressed sensing with sparse-tree prior[J]. Signal Processing, 2015, 108: 628-641.
[17] WILKINSON T J, HUWS S A, EDWARDS J E, et al. CowPI: A rumen microbiome focussed version of the PICRUSt functional inference software[J]. Frontiers in Microbiology, 2018, 9(5): 1 095.
[18] HUERTA-CEPAS J, SZKLARCZYK D, HELLER D, et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucleic Acids Research, 2018, 47(D1): 309-314.
[19] WARD T, LARSON J, MEULEMANS J, et al. BugBase predicts organism level microbiome phenotypes[J]. BioRxiv, 2017: 133462.
[20] HOSEINIFAR S H, RING? E, SHENAVAR MASOULEH A, et al. Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: A review[J]. Reviews in Aquaculture, 2016, 8(1): 89-102.
[21] 李娜, 王玉荣, 葛东颖, 等. 当阳地区鲊广椒中乳酸菌的分离鉴定及其应用[J]. 中国酿造, 2019, 38(2): 37-41.
[22] 杨吉霞, 张利玲, 蒋厚阳, 等. 眉山泡菜中乳酸菌的分离鉴定[J]. 食品科学, 2015, 36(17): 158-163.
[23] 敖晓琳, 蒲彪, 蔡义民, 等. 发酵乳杆菌及其益生特性研究进展[J]. 食品与生物技术学报, 2015, 34(2): 121-127.
[24] 王玉荣, 孙永坤, 代凯文, 等. 基于单分子实时测序技术的3个当阳广椒样品细菌多样性研究[J]. 食品工业科技, 2018, 39(2): 108-112;118.
[25] ZHANG Z, HOU Q, WANG Y, et al. Lactobacillus zhachilii sp. nov., a lactic acid bacterium isolated from Zha-Chili[J]. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(8): 2 196-2 201.
[26] FUSCO V, QUERO G M, CHO G S, et al. The genus Weissella: taxonomy, ecology and biotechnological potential[J]. Frontiers in Microbiology, 2015, 6: 155.
[27] 葛东颖, 王玉荣, 向凡舒, 等. 荆州地区鲊广椒乳酸菌多样性解析及其分离株发酵特性的评价[J]. 中国食品添加剂, 2019, 30(4): 72-79.
[28] FU J, LV H, CHEN F. Diversity and variation of bacterial community revealed by MiSeq sequencing in chinese dark teas[J]. PLoS One, 2016, 11(9): e0 162 719.
[29] 宋宇琴. 德氏乳杆菌保加利亚亚种的群体遗传学和功能基因组学研究[D]. 呼和浩特:内蒙古农业大学, 2018.