该文对海参岩藻聚糖硫酸酯进行硫酸酯化修饰,并比较其酯化修饰前后的结构特征及抗氧化活性。分别采用三氧化硫-DMF法和三氧化硫-吡啶法制备硫酸酯化海参岩藻聚糖硫酸酯,以取代度为考察指标,研究了反应温度、酯化剂用量、反应时间对酯化效果的影响。结果表明,三氧化硫-DMF法的最佳修饰条件为:反应温度为40 ℃、酯化剂用量1.2 g、反应时间为3 h,产品取代度可达15.63;三氧化硫-吡啶法的最佳修饰条件为:反应温度为90 ℃、酯化剂用量1.2 g、反应时间为3 h,产品取代度可达13.31。抗氧化活性测定结果显示,硫酸酯化海参岩藻聚糖硫酸酯对DPPH·和·OH的清除率均显著提高,且三氧化硫-DMF法所得产品的抗氧化活性略高。
This study was aimed to conduct sulfated modification of acaudina fucoidan (AFuc),and to compare structure characteristics and antioxidant activity of AFuc before and after sulfated modification. Sulfur trioxide-DMF method and sulfur trioxide-pyridine method were used to prepare sulfated acaudina fucoidan (SAFuc). The influences of regent dosage, reaction time and reaction temperature on the degree of substitution (DS) were investigated. Results showed that the optimum modification conditions of sulfur trioxide-DMF method were as follows: the reaction temperature is 40 ℃, the dosage of esterifying agent is 1.2 g and the reaction time is 3 h with DS reaching 15.63. The optimum modification conditions of sulfur trioxide-pyridine method were as follows: the reaction temperature is 90 ℃, the dosage of esterifying agent is 1.2 g, and the reaction time is 3 h with DS reaching 13.31. In conclusion, anti-oxidation analysis reveals that the ability of SAFuc on scavenging DPPH and hydroxyl radical has been improved a lot and the antioxidant activity of the product obtained by sulfur trioxide-DMF method is slightly higher.
[1] KARIYA Y, MULLOY B, IMAI K, et al. Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis[J]. Carbohydr Res., 2004, 339(7): 1 339-1 346.
[2] 张健, 刘芳, 张金浩,等. 海参多糖制备、化学分析及生物活性研究进展[J]. 食品安全质量检测学报, 2018, 9(8):16-22.
[3] CHEN S, XUE C, YIN L, et al. Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different Sea cucumbers[J]. Carbohydr Polym, 2011, 83(2): 688-696.
[4] 张祺, 李学敏, 李兆杰, 等. 海参岩藻聚糖硫酸酯对巨噬细胞的调节作用及信号通路研究[J]. 中国药理学通报, 2015,31(1):87-92.
[5] LUO L, WU M, XU L, et al. Comparison of physicochemical characteristics and anticoagulant activities of polysaceharides from three sea cucumbers [J].Marine Drugs, 2013, 11(2): 399-417.
[6] 张珣, 王静凤, 徐雷, 等. 海地瓜和冰岛刺参海参岩藻聚糖硫酸酯抗肿瘤作用的比较研究[J]. 食品科学, 2012, 33(7):251-255.
[7] 朱玉婕, 常耀光, 王静凤. 3种海参岩藻聚糖硫酸酯改善胰岛素抵抗的构效关系研究[C]. 中国食品科学技术学会第十五届年会, 2018:174.
[8] ZHANG M, CUI S W, CHEUNG P C K, et al. Antitumor polysaccharides from Mushrooms: A review on their isolation process, structural characteristics and antitumor activity[J]. Trends Food Sci Technol, 2007, 18(1):4-19.
[9] BEDINI E, LAEZZA A, PARRILLI M, et al. A review of chemical methods for the selective sulfation and desulfation of polysaccharides[J]. Carbohydrate Polymers, 2017, 174:1 224-1 239.
[10] 杜湛湛, 张嫱, 徐平,等. 粒毛盘菌多糖纯化、硫酸酯化修饰及抗氧化活性评价[J]. 合肥工业大学学报(自然科学版), 2016, 39(1):134-139.
[11] PANDYA U, DHULDHAJ U, SAHAY N S. Bioactive mushroom polysaccharides as antitumor: An overview[J]. Natural Product Research, 2018(3):1-13.
[12] ERMAKOVA S P, MENSHOVA R V, ANASTYUK S D, et al. Structure, chemical and enzymatic modification, and anticancer activity of polysaccharides from the brown alga Turbinaria ornata[J]. Journal of Applied Phycology, 2016, 28(4):2 495-2 505.
[13] QI J, KIM S M. Effects of the molecular weight and protein and sulfate content of Chlorella ellipsoidea polysaccharides on their immunomodulatory activity[J]. International Journal of Biological Macromolecules, 2017, 107(Pt A):70-77.
[14] SU C W, CHIANG M Y, LIN Y L, et al. Sodium dodecyl sulfate-modified doxorubicin-loaded chitosan-lipid nanocarrier with multipolysaccharide-lecithin nanoarchitecture for augmented bioavailability and stability of oral administration in vitro and in vivo[J]. Journal of Biomedical Nanotechnology, 2016, 12(5):962-972.
[15] 刘燕琼, 黄雪松. 几种硫酸化试剂和溶剂对菊糖硫酸化改性的影响[J]. 天然产物研究与开发, 2006, 18(5):747-750.
[16] 王瑞芳, 吴光斌, 谢远红,等.海参岩藻聚糖硫酸酯的超滤纯化工艺研究[J]. 食品研究与开发, 2017,38(2):58-61.
[17] DODGSON K S, PRICE R G. A Note on the determination of the ester sulphate content of sulphate polysaccharides[J]. Biological Chemistry, 1962, 84: 106-110.
[18] 王瑞芳, 吴光斌, 谢远红,等. 氯磺酸-吡啶法酯化修饰海参岩藻聚糖硫酸酯的研究[J]. 内蒙古民族大学学报:自然科学版, 2016, 31(4):288-292.
[19] 王瑞芳, 吴光斌, 谢远红,等. 硫酸酯化剂和溶剂对海参岩藻聚糖硫酸酯化修饰的影响[J]. 天然产物研究与开发, 2016(11):1 806-1 809.
[20] IMBS T I, SKRIPTSOVA A V, ZVYAGINTSEVA T N. Antioxidant activity of fucose-containing sulfated polysaccharides obtained from Fucus evanescens by different extraction methods[J]. Journal of Applied Phycology, 2015, 27(1):545-553.
[21] HAN N, WANG L, SONG Z, et al. Optimization and antioxidant activity of polysaccharides from Plantago depressa[J]. International Journal of Biological Macromolecules, 2016, 93(Pt A):644-654.
[22] 阚国仕, 韩璐, 陈红漫,等. 硫酸酯化胡萝卜多糖工艺及其抗氧化活性的研究[J]. 食品与发酵工业, 2014, 40(5):147-151.
[23] LAEZZA A, IADONISI A, PIROZZI A V, et al. A Modular Approach to a library of semi-synthetic fucosylated chondroitin sulfate polysaccharides with different sulfation and fucosylation patterns[J]. Chemistry-A European Journal, 2016, 22(50):18 215-18 226.
[24] 王新宇. 小刺猴头菌硫酸化多糖的制备与活性研究[D]. 长春:吉林农业大学, 2011.
[25] 姚秋萍, 何可群, 黎璐,等. 鱼腥草多糖硫酸酯化修饰及清除自由基活性[J]. 食品工业, 2019, 40(8):36-39.
[26] 许春平, 孙懿岩, 白家峰,等. 怀山药多糖的提取、硫酸酯化修饰及抗氧化活性研究[J]. 河南工业大学学报(自然科学版), 2019, 40(3):50-55.
[27] 谢明勇, 王之珺, 谢建华. 多糖的硫酸化修饰及其结构与生物活性关系研究进展[J]. 中国食品学报, 2015, 15(2):1-8.