研究报告

光滑球拟酵母发酵生产丙酮酸的补料过程优化

  • 郭李坤 ,
  • 曾伟主 ,
  • 周景文
展开
  • 1(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122);
    2(江南大学 生物工程学院,江苏 无锡,214122)
硕士研究生(周景文教授为通讯作者,E-mail: zhoujw1982@jiangnan.edu.cn)

收稿日期: 2019-11-23

  网络出版日期: 2020-05-19

基金资助

国家自然科学基金优秀青年基金项目(21822806);国家自然科学基金(31670095)

Process optimization of fed-batch fermentation for pyruvic acid production with Candida glabrata

  • GUO Likun ,
  • ZENG Weizhu ,
  • ZHOU Jingwen
Expand
  • 1(National Engineering Laboratory for Cereal Fermentation Technology (NELCF) (Jiangnan University), Wuxi 214122, China);
    2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2019-11-23

  Online published: 2020-05-19

摘要

为了提高1株光滑球拟酵母(Candida glabrata)高产突变菌株的丙酮酸产量和底物转化率,对发酵过程进行了系统优化。首先,对诱变筛选获得的7株菌株进行发酵验证,确定最佳菌株为C. glabrata 4H2。对种子培养基重要成分及浓度进行优化,确定最佳氮源为大豆蛋白胨,质量浓度为10 g/L。突变菌株在30 ℃条件下摇瓶发酵52 h,产量达到(48.56±0.46) g/L,生产强度为0.93 g/(L·h),糖酸转化率为0.46 g/g,比优化前分别提高了25.0%、52.5%和43.8%。基于上述结果,在15 L发酵罐中进行发酵条件优化,确定了以初始葡萄糖质量浓度为80 g/L,当葡萄糖质量浓度剩余55 g/L时,恒速流加70 g/L葡萄糖的补料发酵工艺,最终丙酮酸的产量达到最高,为(86.63±0.29) g/L,较摇瓶水平提高了78.4%,生产强度为1.07 g/(L·h),糖酸转化率为0.78 g/g。研究表明,发酵过程优化强化光滑球拟酵母生产丙酮酸是一种有效的方法,该研究为进一步提升工业水平丙酮酸发酵性能奠定了基础。

本文引用格式

郭李坤 , 曾伟主 , 周景文 . 光滑球拟酵母发酵生产丙酮酸的补料过程优化[J]. 食品与发酵工业, 2020 , 46(7) : 10 -16 . DOI: 10.13995/j.cnki.11-1802/ts.022872

Abstract

In order to improve the titer and yield of pyruvic acid, the fermentation conditions for pyruvic acid production by Candida glabrata mutants were systematically optimized. A strain C. glabrata 4H2 with better performance in accumulating pyruvic acid was firstly selected from seven screened strains. Then, various types and concentrations of nitrogen source were tested for seed cultivation in shake flasks. The optimum nitrogen source was determined to be soybean peptone and its optimal concentration was 10 g/L. As a result, the titer, yield and productivity of pyruvic acid of the optimized fermentation process reached (48.56±0.46) g/L, 0.46 g/g and 0.93 g/(L·h), respectively, after 52 h shake-flask cultivation at 30 ℃, which were increased by 25.0%, 43.8% and 52.5%, respectively. Further, the fermentation optimization was performed in a 15 L bioreactor. First, the optimum initial glucose concentration was determined to be 80 g/L. Then, when the concentration of residual glucose was lowered down to 55 g/L, 70 g/L glucose was supplemented into the bioreactor with a constant feeding approach. The final titer of pyruvic acid reached (86.63±0.29) g/L, which was 78.4% higher than that of shake-flask cultivation. The productivity and yield of pyruvic acid reached 1.07 g/(L·h) and 0.78 g/g, respectively. The results indicated that the fermentation optimization effectively improved pyruvic acid production in C. glabrata, which laid a foundation for the industrial production of pyruvic acid.

参考文献

[1] XU P, JIANHUA Q, CHAO G, et al. Biotechnological routes to pyruvate production [J]. Journal of Bioscience and Bioengineering, 2008, 105(3): 169-175.
[2] KERBER R C, FERNANDO M S. α-Oxocarboxylic acids [J]. Journal of Chemical Education, 2010, 87(10): 1 079-1 084.
[3] YANG M, XING J. Improvement of pyruvate production based on regulation of intracellular redox state in engineered Escherichia coli [J]. Biotechnology and Bioprocess Engineering, 2017, 22(4): 376-381.
[4] ARTHUR J L C, JAMES Z G, ALTON M. Synthesis and properties of the alpha-keto acids [J]. Chemical Reviews, 1983, 83(3): 321-358.
[5] SONG Y, LI J, SHIN H-D, et al. Biotechnological production of alpha-keto acids: Current status and perspectives [J]. Bioresource Technology, 2016, 219: 716-724.
[6] HOSSAIN G S, SHIN H-D, LI J, et al. Transporter engineering and enzyme evolution for pyruvate production from D/L-alanine with a whole-cell biocatalyst expressing L-amino acid deaminase from Proteus mirabilis [J]. RSC Advances, 2016, 6(86): 82 676-82 684.
[7] CHAO G, XIAOMAN X, CHUNHUI H, et al. Pyruvate producing biocatalyst with constitutive NAD-independent lactate dehydrogenases [J]. Process Biochemistry, 2010, 45(12): 1 912-1 915.
[8] EISENBERG A, SEIP J E, GAVAGAN J E, et al. Pyruvic acid production using methylotrophic yeast transformants as catalyst [J]. Journal of Molecular Catalysis B Enzymatic, 1997, 2(4): 223-232.
[9] KAWAI S, OHASHI K, YOSHIDA S, et al. Bacterial pyruvate production from alginate, a promising carbon source from marine brown macroalgae [J]. Journal of Bioscience and Bioengineering, 2014, 117(3): 269-274.
[10] MIYAZAKI M, SHIBUE M, OGINO K, et al. Enzymatic synthesis of pyruvic acid from acetaldehyde and carbon dioxide [J]. Chemical Communications, 2001, 33(18): 1 800-1 801.
[11] YANG S, CHEN X, XU N, et al. Urea enhances cell growth and pyruvate production in Torulopsis glabrata [J]. Biotechnology Progress, 2014, 30(1): 19-27.
[12] VAN MARIS A J A, GEERTMAN J M A, VERMEULEN A, et al. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast [J]. Applied and Environmental Microbiology, 2004, 70(1): 159-166.
[13] ZHU Y, EITEMAN M A, ALTMAN R, et al. High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain [J]. Applied and Environmental Microbiology, 2008, 74(21): 6 649-6 655.
[14] JINGWEN Z, LUXI H, LIMING L, et al. Enhancement of pyruvate productivity by inducible expression of a F0F1-ATPase inhibitor INH1 in Torulopsis glabrata CCTCC M202019 [J]. Journal of Biotechnology, 2009, 144(2): 120-126.
[15] SHA X, JINGWEN Z, LIMING L, et al. Arginine: A novel compatible solute to protect Candida glabrata against hyperosmotic stress [J]. Process Biochemistry, 2011, 46(6): 1 230-1 235.
[16] LUO Z, ZENG W, DU G, et al. Enhanced pyruvate production in Candida glabrata by engineering ATP futile cycle system [J]. ACS Synthetic Biology, 2019, 8(4): 789-795.
[17] ZHOU J, LIU L, DU G, et al. Citrate protect the growth of Torulopsis glabrata CCTCC M202019 against acidic stress as additional ATP supplier [J]. Journal of Biotechnology, 2008, 136: S741.
[18] LUO Z, ZENG W, DU G, et al. A high-throughput screening procedure for enhancing pyruvate production in Candida glabrata by random mutagenesis [J]. Bioprocess and Biosystems Engineering, 2017, 40(5): 693-701.
[19] LUO Z, LIU S, DU G, et al. Enhanced pyruvate production in Candida glabrata by carrier engineering [J]. Biotechnology and Bioengineering, 2018, 115(2): 473.
[20] LI Y, CHEN J, LUN S Y, et al. Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels [J]. Applied Microbiology and Biotechnology, 2001, 55(6): 680-685.
[21] QIN Y, JOHNSON C H, LIU L, et al. Introduction of heterogeneous NADH reoxidation pathways into Torulopsis glabrata significantly increases pyruvate production efficiency [J]. Korean Journal of Chemical Engineering, 2011, 28(4): 1 078.
[22] LUO Z, LIU S, DU G, et al. Identification of a polysaccharide produced by the pyruvate overproducer Candida glabrata CCTCC M202019 [J]. Applied Microbiology and Biotechnology, 2017, 101(11): 4 447-4 458.
[23] CELI?SKA E. Debottlenecking the 1,3-propanediol pathway by metabolic engineering [J]. Biotechnology Advances, 2010, 28(4): 519-530.
[24] ENKLER L, RICHER D, MARCHAND A L, et al. Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system [J]. Scientific Reports, 2016, 6: 35 766.
[25] CEN Y, FIORI A, DIJCK P V. Deletion of the DNA ligase IV gene in Candida glabrata significantly increases gene-targeting efficiency [J]. Eukaryotic Cell, 2015, 14(8): 783-791.
文章导航

/