研究报告

干化处理对霞多丽葡萄酒质量的影响

  • 王琳 ,
  • 赵裴 ,
  • 刘洋 ,
  • 刘杨洁 ,
  • 韩富亮
展开
  • 1(西北农林科技大学 葡萄酒学院,陕西 杨凌,712100);
    2(陕西省葡萄与工程技术研究中心,陕西 杨凌,712100);
    3(西北农林科技大学 合阳葡萄试验示范站,陕西 合阳,715300)
硕士研究生(韩富亮副教授为通讯作者,E-mail: hanfl@nwsuaf.edu.cn)

收稿日期: 2019-12-18

  网络出版日期: 2020-05-19

基金资助

陕西省重点研发资助项目(2017NY-184);“十三五”国家重点研发计划重点专项(2016YFD0400500)

The effect of dehydration treatment on Chardonnay wine

  • WANG Lin ,
  • ZHAO Pei ,
  • LIU Yang ,
  • LIU Yangjie ,
  • HAN Fuliang
Expand
  • 1(College of Enology, Northwest A&W University, Yangling 712100, China);
    2(Shaanxi Grape and Engineering Technology Research Center, Yangling 712100, China);
    3(Heyang Grape Test Demonstration Station, Northwest A&W University, Heyang 715300, China)

Received date: 2019-12-18

  Online published: 2020-05-19

摘要

为提高白葡萄酒营养价值,改善其感官质量,以霞多丽葡萄为试验对象,研究干化处理对白葡萄酒质量的影响。使用水分损失(20%、30%和40%)的干化葡萄酿制干化酒样,以鲜葡萄酒为对照,对酒样进行感官及营养指标测定。结果表明,干化处理提高了酒样的乙醇体积分数、残糖和酸度;提高了酒样单体酚类物质含量及其总量;增强了酒样的抗氧化性;提高了酒样的亮度,加深了黄色调;赋予葡萄酒浓郁的香气及饱满的口感。综合各项指标的变化,说明干化处理显著提高了白葡萄酒的营养价值和感官质量,葡萄失水率为30%的干化处理,对葡萄酒质量的改善效果最好。干化处理可用于提高或改善白葡萄酒的营养价值和感官品质。

本文引用格式

王琳 , 赵裴 , 刘洋 , 刘杨洁 , 韩富亮 . 干化处理对霞多丽葡萄酒质量的影响[J]. 食品与发酵工业, 2020 , 46(7) : 83 -88 . DOI: 10.13995/j.cnki.11-1802/ts.023134

Abstract

In order to improve the nutritional value and the sensory quality of white wine, dehydration grape brewing test was carried out using Chardonnay grape to study the effect of different water loss (20%, 30%, 40%) on white wine by analyzing their difference in sensory and nutritional indicators. The control wine was made from fresh grape. The results showed that dehydration elevated the alcohol content, residual sugar and acidity, increased the respective content and total amount of the phenols, as well as the antioxidant activity, the brightness, the yellow tone, the aroma and the taste improved. According to the changes of each index, dehydration significantly improved the nutritional value and sensory quality of the white wine, and the best effect was obtained with 30% dehydration. Dehydration can effectively improve the nutritional value and sensory quality of white wine.

参考文献

[1] 郑向春,纳尔什·格雷本. ”品味想象”: 葡萄酒中国消费的社会话语研究[J]. 美食研究, 2019(2):1-7.
[2] 苗冠军,苏丽,张庆霞. 产区竞争时代下的中国葡萄酒产区产业竞争力评价[J]. 湖北农业科学,2019,58(19):78-83.
[3] 梁振昌. 中国葡萄酒产业现状与发展瓶颈[J]. 生命世界,2018(4):20-21.
[4] DE CASTILHOS MBM, CATTELAN MG, CONTISILVA AC, et al. Influence of two different vinification procedures on the physicochemical and sensory properties of Brazilian non-Vitis vinifera red wines[J]. LWT - Food Science and Technology, 2013,54(2):360-366.
[5] 郑峰,段继华,黄伟,等. 不同风干度对赤霞珠葡萄酒品质影响[J]. 食品科技,2015,36(8):54-58.
[6] PANCERI C P, DE GOIS J S, BORGES D L, et al. Effect of grape dehydration under controlled conditions on chemical composition and sensory characteristics of Cabernet Sauvignon and Merlot wines[J]. LWT-Food Science and Technology,2015,63(1):228-235.
[7] RESCIC J, MIKULIC-PETKOVSEK M, RUSUAN D. The impact of partial dehydration on grape and wine chemical composition of white grapevine (Vitis vinifera L.) varieties[J]. European Journal of Horticultural Science,2016,81(6):310-320.
[8] WESLEY E S, BARBARA J T, RODOLPHO C D R T, et al. Postharvest dehydration of Syrah grapes (Vitis vinifera L.) under controlled temperature conditions with real-time monitoring of mass loss[J]. African Journal of Agricultural Research,2015,10(4):229-234.
[9] BONGHI C, RIZZINI F M, GAMBUTI A, et al. Phenol compound metabolism and gene expression in the skin of wine grape (Vitis vinifera L.) berries subjected to partial postharvest dehydration[J]. Postharvest Biology and Technology,2012,67:102-109.
[10] DE CASTILHOS M B, MAIA J D, GOMEZALONSO S, et al. Sensory acceptance drivers of pre-fermentation dehydration and submerged cap red wines produced from Vitis labrusca hybrid grapes[J]. LWT - Food Science and Technology, 2016,69(69):82-90.
[11] 付丽霞,张惠玲,齐晓琴,等. 干化葡萄酒品质的比较及挥发性成分的GC-MS分析[J]. 中国酿造,2017,36(2):166-170.
[12] MOHSEN ESMAIILI, RAHMAT SOTUDEH-GHAREBAGH, KEVINCRONIN, et al. Grape drying: a review[J]. Food Reviews International,2007,23(3):257-280.
[13] PANGAVHANE D R, SARHNEY R L. Review of research and development work on solar dryers for grape drying[J]. Energy Conversion and Management,2002,43(1):45-61.
[14] MIKULIC-PETKOVSEK M, JUG T, RESCIC J, et al. Effects of partial dehydration techniques on the metabolite composition in ‘Refošk’ grape berries and wine[J]. Turkish Journal of Agriculture and Forestry,2017,41:10-22.
[15] FABIO M, ANDREA B, ISABELLA N, et al. Chemical and biochemical change of healthy phenolic fractions in wine grape by means of postharvest dehydration[J]. Journal of Agricultural and Food Chemistry,2010,58(13):7 557-7 564.
[16] DE CASTILHOS M B, CORREA O, ZANUS M C, et al. Pre-drying and submerged cap winemaking: Effects on polyphenolic compounds and sensory descriptors. Part I: BRS Rubea and BRS Cora[J]. Food Research International,2015,75:374-384.
[17] DE SANCTIS F, SILVESTRINI M G, LUNEIA R, et al. Postharvest dehydration of wine white grapes to increase genistein, daidzein and the main carotenoids[J]. Food Chemistry,2012,135(3):1 619-1 625.
[18] 付丽霞.干化处理对贺兰山东麓赤霞珠葡萄浆果及其葡萄酒品质的影响[D].银川:宁夏大学,2016.
[19] 贺晋瑜.酚类物质对葡萄酒品质的影响[J]. 山西农业科学,2012,40(10):1 118-1 120.
[20] 李华.小容器酿造葡萄酒[J]. 酿酒科技,2002(4):70-71.
[21] 葡萄酒、果酒通用分析方法[S].北京:中国标准出版社,2006.
[22] GONNET J. Colour effects of co-pigmentation of anthocyanins revisited-1. A colorimetric definition using the CIELAB scale[J]. Food Chemistry,1998,63(3):409-415.
[23] AYALA F, NEGUERUELA A. A new simplified method for measuring the color of wines. III. All Wines and Brandies[J]. American Journal of Enology and Viticulture,1999,48(3):364-369.
[24] YANG P, LI H, WANG H, et al. Dispersive liquid-liquid microextraction method for HPLC determination of phenolic compounds in wine[J]. Food Analytical Methods,2017,10(7):2 383-2 397.
[25] 王晓宇.葡萄酒抗氧化活性及其检测方法的研究[D].咸阳:西北农林科技大学,2008.
[26] 李华.葡萄酒品尝学[M].北京:科学出版社, 2006.
[27] PANCERI C P, GOMES T M, DE GOIS J S, et al. Effect of dehydration process on mineral content, phenolic compounds and antioxidant activity of Cabernet Sauvignon and Merlot grapes[J]. Food Research International,2013,54(2):1 343-1 350.
[28] FIGUEIREDO-GONZALEZ M, CANCHO-GRANDE B, SIMAL-GANDARA J, et al. Garnacha Tintorera-based sweet wines: Chromatic properties and global phenolic composition by means of UV-Vis spectrophotometry[J]. Food Chemistry,2013,140(1-2):217-224.
[29] LOPEZ DE LERMA N, GARCIAMARTINEZ T, MORENO J, et al. Sweet wines with great aromatic complexity obtained by partial fermentation of must from Tempranillo dried grapes[J]. European Food Research and Technology,2012,234(4):695-701.
[30] PEINADO J, LERMA N L D, MORENO J, et al. Antioxidant activity of different phenolics fractions isolated in must from Pedro Ximenez grapes at different stages of the off-vine drying process[J]. Food Chemistry,2009,114(3):1 050-1 055.
[31] ARNOU A, MAKRIS D P, KEFALAS P, et al. Effect of principal polyphenolic components in relation to antioxidant characteristics of aged red wines[J]. Journal of Agricultural and Food Chemistry,2001,49(12): 5 736-5 742.
[32] NICOLETTI I, BELLINCONTRO A, DE ROSSI A, et al. Postharvest dehydration of Nebbiolo grapes grown at altitude is affected by time of defoliation[J]. Australian Journal of Grape and Wine Research,2013,19(3): 358-368.
[33] OSSOLA C, GIACOSA S, TORCHIO F, et al. Comparison of fortified, sfursat, and passito wines produced from fresh and dehydrated grapes of aromatic black cv. Moscato nero (Vitis vinifera L.)[J]. Food Research International,2017,98:59-67.
[34] MIGUEL F, RAFAEL ANDRES P, MANUEL M, et al. Off-vine grape drying effect on volatile compounds and aromatic series in must from Pedro Ximénez grape variety[J]. Journal of Agricultural and Food Chemistry,2004,52(12):3 905-3 910.
文章导航

/