综述与专题评论

脂肪酶位置选择性及其应用在功能性结构甘油三酯合成中的研究进展

  • 曹茜 ,
  • 王丹 ,
  • 袁永俊
展开
  • (西华大学 食品与生物工程学院,四川 成都,610039)
博士,讲师(本文通讯作者,E-mail:caoxi@mail.xhu.edu.cn)

收稿日期: 2020-03-12

  网络出版日期: 2020-06-24

基金资助

粮油工程与食品安全四川省高校重点实验室开放课题(szjj2017-106);四川省教育厅自然科学基金(18ZB0568)

Advances in lipase regioselectivity and its applications in synthesisof functional structured triacylglycerols

  • CAO Xi ,
  • WANG Dan ,
  • YUAN Yongjun
Expand
  • (College of Food and Bioengineering, Xihua University, Chengdu 610039, China)

Received date: 2020-03-12

  Online published: 2020-06-24

摘要

除了反应条件温和以及具生物可降解性等酶类的共同优点之外,脂肪酶所具有的各类选择性使其成为应用最广泛的生物催化剂之一。由于脂肪酸的位置分布能显著影响甘油三酯的营养学价值和物理化学性质,因此脂肪酶的位置选择性成为功能性结构甘油三酯合成领域最受关注的特性。文章首先从分类、分析方法和影响因素等方面对脂肪酶的位置选择性进行综述,进而详细介绍了脂肪酶位置选择性在类可可脂与可可脂改良剂、人母乳脂肪替代品以及MLM型结构酯等功能性结构甘油三酯合成中的应用。

本文引用格式

曹茜 , 王丹 , 袁永俊 . 脂肪酶位置选择性及其应用在功能性结构甘油三酯合成中的研究进展[J]. 食品与发酵工业, 2020 , 46(11) : 295 -301 . DOI: 10.13995/j.cnki.11-1802/ts.023932

Abstract

Various selectivities make lipases become one of the most widely used biocatalysts, besides common advantages of enzymes including mild reaction conditions and biodegradability. Since positional distribution of fatty acids can significantly affect the nutritive value and physicochemical properties of triacylglycerols, lipase regioselectivity has become the major concern in the field of synthesis of functional structured triacylglycerols. This paper reviewed the progress of lipase regioselectivity in the aspects of classification, analysis methods and influence factors. Moreover, applications of regioselectivity in synthesis of functional structured triacylglycerols were particularly introduced, such as cocoa butter equivalents and improvers, human milk fat substitutes and MLM type structured lipids.

参考文献

[1] HE Y, QIU C, GUO Z, et al. Production of new human milk fat substitutes by enzymatic acidolysis of microalgae oils from Nannochloropsis oculata and Isochrysis galbana[J]. Bioresource Technology, 2017, 238: 129-138.
[2] MA G, DAI L, LIU D, et al. Lipase-mediated selective methanolysis of fish oil for biodiesel production and polyunsaturated fatty acid enrichment[J]. Energy & Fuels, 2018, 32(7): 7 630-7 635.
[3] CAO X, MANGAS-SANCHEZ J, FENG F, et al. Acyl migration in enzymatic interesterification of triacylglycerols: Effects of lipases from Thermomyces lanuginosus and Rhizopus oryzae, support material, and water activity[J]. European Journal of Lipid Science and Technology, 2016, 118(10): 1 579-1 587.
[4] LIU S L, DONG X Y, WEI F, et al. Ultrasonic pretreatment in lipase-catalyzed synthesis of structured lipids with high 1,3-dioleoyl-2-palmitoylglycerol content[J]. Ultrasonics Sonochemistry, 2015, 23: 100-108.
[5] COSTA C M, OSORIO N M, CANET A, et al. Production of MLM type structured lipids from grapeseed oil catalyzed by non-commercial lipases[J]. European Journal of Lipid Science and Technology, 2018, 120(1): 1-8.
[6] JERMSUNTIEA W, AKI T, TOYOURA R, et al. Purification and characterization of intracellular lipase from the polyunsaturated fatty acid-producing fungus Mortierella alliacea[J]. New Biotechnology, 2011, 28(2): 158-164.
[7] SUGIHARA A, SHIMADA Y, TAKADA N, et al. Penicillium abeanum lipase: Purification, characterization, and its use for docosahexaenoic acid enrichment of tuna oil[J]. Journal of Fermentation and Bioengineering, 1996, 82(5): 498-501.
[8] 曹茜, 韦伟, 张希, 等. 利用月桂酸和山茶油的酸解反应分析脂肪酶的位置专一性[J]. 中国粮油学报, 2017, 32(3): 74-80.
[9] RASHID N, SHIMADA Y, EZAKI S, et al. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A[J]. Applied and Environmental Microbiology, 2001, 67(9): 4 064-4 069.
[10] KOJIMA Y, SHIMIZU S. Purification and characterization of the lipase from Pseudomonas fluorescens HU380[J]. Journal of Bioscience and Bioengineering, 2003, 96(3): 219-226.
[11] CHANDLER I C. Determining the regioselectivity of immobilized lipases in triacylglycerol acidolysis reactions[J]. Journal of the American Oil Chemists' Society, 2001, 78(7): 737-742.
[12] LIU G, HU S, LI L, et al. Purification and characterization of a lipase with high thermostability and polar organic solvent-tolerance from Aspergillus niger AN0512[J]. Lipids, 2015, 50(11): 1 155-1 163.
[13] SAXENA R K, DAVIDSON W S, SHEORAN A, et al. Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus[J]. Process Biochemistry, 2003, 39(2): 239-247.
[14] YADAV R P, AGARWAL P, UPADHYAY S N. Efficient purification and characterization of neem oil hydrolysing lipase from Aspergillus aculeatus for enrichment of immunomodulators[J]. Journal of Scientific & Industrial Research, 2002, 61(2): 103-109.
[15] BAKIR Z B, METIN K. Purification and characterization of an alkali-thermostable lipase from thermophilic Anoxybacillus flavithermus HBB 134[J]. Journal of Microbiology and Biotechnology, 2016, 26(6): 1 087-1 097.
[16] DEMIR B S, TÜKEL S S. Purification and characterization of lipase from Spirulina platensis[J]. Journal of Molecular Catalysis B-Enzymatic, 2010, 64(3-4): 123-128.
[17] SALAMEH M A, WIEGEL J. Purification and characterization of two highly thermophilic alkaline Lipases from Thermosyntropha lipolytica[J]. Applied and Environmental Microbiology, 2007, 73(23): 7 725-7 731.
[18] HUANG Y L, LOCY R, WEETE J D. Purification and characterization of an extracellular lipase from Geotrichum marinum[J]. Lipids, 2004, 39(3): 251-257.
[19] TAKÓ M, KOTOGÁN A, PAPP T, et al. Purification and properties of extracellular lipases with transesterification activity and 1,3-regioselectivity from Rhizomucor miehei and Rhizopus oryzae[J]. Journal of Microbiology and Biotechnology, 2017, 27(2): 277-288.
[20] HIOL A, JONZO M D, RUGANI N, et al. Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit[J]. Enzyme and Microbial Technology, 2000, 26(5-6): 421-430.
[21] LI D M, QIN X L, WANG J R, et al. Hydrolysis of soybean oil to produce diacylglycerol by a lipase from Rhizopus oryzae[J]. Journal of Molecular Catalysis B-Enzymatic, 2015, 115: 43-50.
[22] TODOROVA T, GUNCHEVA M, DIMITROVA R, et al. Walnut oil-unexplored raw material for lipase-catalyzed synthesis of low-calorie structured lipids for clinical nutrition[J]. Journal of Food Biochemistry, 2015, 39(5): 603-611.
[23] YOO H Y, SIMKHADA J R, CHO S S, et al. A novel alkaline lipase from Ralstonia with potential application in biodiesel production[J]. Bioresource Technology, 2011, 102(10): 6 104-6 111.
[24] MORALES-MEDINA R, MUNIO M, GUADIX A, et al. A lumped model of the lipase catalyzed hydrolysis of sardine oil to maximize polyunsaturated fatty acids content in acylglycerols[J]. Food Chemistry, 2018, 240: 286-294.
[25] YAN Q J, DUAN X J, LIU Y, et al. Expression and characterization of a novel 1,3-regioselective cold-adapted lipase from Rhizomucor endophyticus suitable for biodiesel synthesis[J]. Biotechnology for Biofuels, 2016, 9: 13.
[26] HE Y, LI J, KODALI S, et al. Liquid lipases for enzymatic concentration of n-3 polyunsaturated fatty acids in monoacylglycerols via ethanolysis: Catalytic specificity and parameterization[J]. Bioresource Technology, 2017, 224: 445-456.
[27] TONG X, BUSK P K, LANGE L. Characterization of a new sn-1,3-regioselective triacylglycerol lipase from Malbranchea cinnamomea[J]. Biotechnology and Applied Biochemistry, 2016, 63(4): 471-478.
[28] CAO X, LIAO L, FENG F. Purification and characterization of an extracellular lipase from Trichosporon sp. and its application in enrichment of omega-3 polyunsaturated fatty acids[J]. LWT-Food Science and Technology, 2020, 118: 1-9.
[29] AKIL E, CARVALHO T, BAREA B, et al. Accessing regio-and typo-selectivity of Yarrowia lipolytica lipase in its free form and immobilized onto magnetic nanoparticles[J]. Biochemical Engineering Journal, 2016, 109: 101-111.
[30] ZHENG M, WANG S, XIANG X, et al. Facile preparation of magnetic carbon nanotubes-immobilized lipase for highly efficient synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich human milk fat substitutes[J]. Food Chemistry, 2017, 228: 476-483.
[31] TECELAO C, PERRIER V, DUBREUCQ E, et al. Production of human milk fat substitutes by interesterification of tripalmitin with ethyl oleate catalyzed by Candida parapsilosis lipase/acyltransferase[J]. Journal of the American Oil Chemists Society, 2019, 96(7): 777-787.
[32] KOUTEU P A N, BAREA B, BAROUH N, et al. Lipase activity of tropical oilseed plants for ethyl biodiesel synthesis and their typo- and regioselectivity[J]. Journal of Agricultural and Food Chemistry, 2016, 64(46): 8 838-8 847.
[33] DUAN Z Q, DU W, LIU D H. The mechanism of solvent effect on the positional selectivity of Candida antarctica lipase B during 1, 3-diolein synthesis by esterification[J]. Bioresource Technology, 2011, 102(23): 11 048-11 050.
[34] PRATUANGDEJKUL J, DHARMSTHITI S. Purification and characterization of lipase from psychrophilic Acinetobacter calcoaceticus LP009[J]. Microbiological Research, 2000, 155(2): 95-100.
[35] LAGUERRE M, NLANDU MPUTU M, BRIYS B, et al. Regioselectivity and fatty acid specificity of crude lipase extracts from Pseudozyma tsukubaensis, Geotrichum candidum, and Candida rugosa[J]. European Journal of Lipid Science and Technology, 2017, 119(8).
[36] KAHVECI D, XU X. Repeated hydrolysis process is effective for enrichment of omega 3 polyunsaturated fatty acids in salmon oil by Candida rugosa lipase[J]. Food Chemistry, 2011, 129(4): 1 552-1 558.
[37] MANDER P, CHO S S, SIMKHADA J R, et al. An organic solvent-tolerant alkaline lipase from Streptomyces sp. CS268 and its application in biodiesel production[J]. Biotechnology and Bioprocess Engineering, 2012, 17(1): 67-75.
[38] SUN S Y, XU Y, WANG D. Purification and biochemical characterization of an intracellular lipase by Rhizopus chinensis under solid-state fermentation and its potential application in the production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)[J]. Journal of Chemical Technology and Biotechnology, 2009, 84(3): 435-441.
[39] WATANABE Y, NAGAO T, SHIMADA Y. Control of the regiospecificity of Candida antarctica lipase by polarity[J]. New Biotechnology, 2009, 26(1): 23-28.
[40] 王子田, 苏剑晓, 杜伟, 等. Lipozyme TL IM 催化油酸酯化反应制备 1, 3-甘油二酯[J]. 高等学校化学学报, 2015, 36(8): 1 535-1 541.
[41] LIAN W S, WANG W F, TAN C P, et al. Immobilized Talaromyces thermophilus lipase as an efficient catalyst for the production of LML-type structured lipids[J]. Bioprocess and Biosystems Engineering, 2019, 42(2): 321-329.
[42] AKANBI T O, SINCLAIR A J, BARROW C J. Pancreatic lipase selectively hydrolyses DPA over EPA and DHA due to location of double bonds in the fatty acid rather than regioselectivity[J]. Food Chemistry, 2014, 160: 61-66.
[43] BAHARI A, AKOH C C. Synthesis of a cocoa butter equivalent by enzymatic interesterification of illipe butter and palm Midfraction[J]. Journal of the American Oil Chemists Society, 2018, 95(5): 547-555.
[44] MOHAMED I O. Enzymatic synthesis of cocoa butter equivalent from olive oil and palmitic-stearic fatty acid mixture[J]. Applied Biochemistry and Biotechnology, 2015, 175(2): 757-769.
[45] BAHARI A, AKOH C C. Texture, rheology and fat bloom study of 'chocolates' made from cocoa butter equivalent synthesized from illipe butter and palm mid-fraction[J]. LWT-Food Science and Technology, 2018, 97: 349-354.
[46] WANG X, CHEN Y, ZHENG L, et al. Synthesis of 1,3-distearoyl-2-oleoylglycerol by enzymatic acidolysis in a solvent-free system[J]. Food Chemistry, 2017, 228: 420-426.
[47] FAUSTINO A R, OSORIO N M, TECELAO C, et al. Camelina oil as a source of polyunsaturated fatty acids for the production of human milk fat substitutes catalyzed by a heterologous Rhizopus oryzae lipase[J]. European Journal of Lipid Science and technology, 2016, 118(4): 532-544.
[48] CHEONG L Z, JIANG C, HE X, et al. Lipid profiling, particle size determination, and in vitro simulated gastrointestinal lipolysis of mature human milk and infant formula[J]. Journal of Agricultural and Food Chemistry, 2018, 66(45): 12 042-12 050.
[49] JIMÉNEZ M J, ESTEBAN L, ROBLES A, et al. Production of triacylglycerols rich in palmitic acid at position 2 as intermediates for the synthesis of human milk fat substitutes by enzymatic acidolysis[J]. Process Biochemistry, 2010, 45(3): 407-414.
[50] ZOU X, JIN Q, GUO Z, et al. Preparation and characterization of human milk fat substitutes based on triacylglycerol profiles[J]. Journal of the American Oil Chemists Society, 2016, 93(6): 781-792.
[51] AARTHY M, SARAVANAN P, AYYADURAI N, et al. A two step process for production of omega 3-polyunsaturated fatty acid concentrates from sardine oil using Cryptococcus sp. MTCC 5455 lipase[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 125: 25-33.
[52] KIM B H, AKOH C C. Recent research trends on the enzymatic synthesis of structured lipids[J]. Journal of Food Science, 2015, 80(8): 1 713-1 724.
[53] KAWASHIMA A, SHIMADA Y, YAMAMOTO M, et al. Enzymatic synthesis of high-purity structured lipids with caprylic acid at 1,3-positions and polyunsaturated fatty acid at 2-position[J]. Journal of the American Oil Chemists Society, 2001, 78(6): 611-616.
[54] RODRÍGUEZ A, ESTEBAN L, MARTIN L, et al. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions[J]. Enzyme and Microbial Technology, 2012, 51(3): 148-155.
文章导航

/