[1] SEO D H, JUNG J H, HA S J, et al. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase[J]. Applied Microbiology Biotechnology, 2012, 94(5): 1 189-1 197.
[2] NYCZ J E, MALECKI G, MORAG M, et al. Arbutin: Isolation, X-ray structure and computional studies[J]. Journal of Molecular Structure, 2010, 980(1-3): 13-17.
[3] LIU C, DENG L, ZHANG P, et al. Efficient production of α-arbutin by whole-cell biocatalysis using immobilized hydroquinone as a glucosyl acceptor[J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 91: 1-7.
[4] ZHENG X, ZHANG B, ZENG M, et al. Inhibition of oxidative stress and autophagy by arbutin in lipopolysaccharide-induced myocardial injury[J]. Pharmacognosy Magazine, 2019, 15(63): 507.
[5] SHEN X, WANG J, WANG J, et al. High-level de novo biosynthesis of arbutin in engineered Escherichia coli[J]. Metabolic Engineering, 2017, 42: 52-58.
[6] LIU C Q, DENG L, ZHANG P, et al. Screening of high α-arbutin producing strains and production of α-arbutin by fermentation[J]. World Journal of Microbiology and Biotechnology, 2013, 29(8): 1 391-1 398.
[7] ZHU X, TIAN Y, ZHANG W, et al. Recent progress on biological production of α-arbutin[J]. Applied Microbiology Biotechnology, 2018, 102(19): 8 145-8 152.
[8] ZHOU H, ZHAO J, LI A, et al. Chemical and biocatalytic routes to arbutin[J]. Molecules, 2019, 24(18).
[9] WU P H, NAIR G R, CHU I M, et al. High cell density cultivation of Escherichia coli with surface anchored transglucosidase for use as whole-cell biocatalyst for α-arbutin synthesis[J]. Jouranl of Industrial Microbiology and Biotechnology, 2008, 35(2): 95-101.
[10] YU S, WANG Y, TIAN Y, et al. Highly efficient biosynthesis of α-arbutin from hydroquinone by an amylosucrase from Cellulomonas carboniz[J]. Process Biochemistry, 2018, 68: 93-99.
[11] YANG C, FAN W, ZHANG R, et al. Study on transglucosylation properties of amylosucrase from Xanthomonas campestris pv. campestris and its application in the production of α-arbutin[J]. Catalysts, 2018, 9(1): 5.
[12] ZHU L, XU M, LU C, et al. Optimization of whole-cell biotransformation for scale-up production of α-arbutin from hydroquinone by the use of recombinant Escherichia coli[J]. AMB Express, 2019, 9(1): 94.
[13] ZHU L, JIANG D, ZHOU Y, et al. Batch-feeding whole-cell catalytic synthesis of α-arbutin by amylosucrase from Xanthomonas campestris[J]. Journal of Industrial Microbiology and Biotechnology, 2019, 46(6): 759-767.
[14] GOEDL C, SCHWARZ A, MINANI A, et al. Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of α-D-glucose 1-phosphate[J]. Journal of Biotechnology, 2007, 129(1): 77-86.
[15] MATHEW S, ADLERCREUTZ P. Regioselective glycosylation of hydroquinone to α-arbutin by cyclodextrin glucanotransferase from Thermoanaerobacter sp.[J]. Biochemical Engineering Journal, 2013, 79: 187-193.
[16] MCARTHUR J B, CHEN X. Glycosyltransferase engineering for carbohydrate synthesis[J]. Biochemical Society Transactions, 2016, 44(1): 129-142.
[17] LIU C, ZHANG P, ZHANG S, et al. Feeding strategies for the enhanced production of α-arbutin in the fed-batch fermentation of Xanthomonas maltophilia BT-112[J]. Bioprocess and Biosystems Engineering, 2014, 37(2): 325-329.
[18] GOEDL C, SAWANGWAN T, WILDBERGER P, et al. Sucrose phosphorylase: a powerful transglucosylation catalyst for synthesis of α-D-glucosides as industrial fine chemicals[J]. Biocatalysis and Biotransformation, 2009, 28(1): 10-21.
[19] KAZUHISA S, TAKAHISA N, KOJI N, et al. Syntheses of arbutin-aglycosides and a comparison of their inhibitory effects with those of α-arbutin and arbutin[J]. Chemical Pharmaceutical Bulletin, 2003, 51(7): 798-801.
[20] LEE J H, YOON S H, NAM S H, et al. Molecular cloning of a gene encoding the sucrose phosphorylase from Leuconostoc mesenteroides B-1149 and the expression in Escherichia coli[J]. Enzyme and Microbial Technology, 2006, 39(4): 612-620.
[21] ZHANG H, SUN X, LI W, et al. Expression and characterization of recombinant sucrose phosphorylase[J]. Protein Journal, 2018, 37(1): 93-100.
[22] GOEDL C, SCHWARZ A, MUELLER M, et al. Mechanistic differences among retaining disaccharide phosphorylases: insights from kinetic analysis of active site mutants of sucrose phosphorylase and α-trehalose phosphorylase[J]. Carbohydrate Research, 2008, 343(12): 2 032-2 040.
[23] KITAO S, SEKINE H. α-D-glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of α-arbutin[J]. Bioscience Biotechnology and Biochemistry, 1994, 58(1): 38-42.
[24] VAN D B L A, VAN B E L, KIEVIT R P, et al. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083[J]. Applied Microbiology Biotechnology, 2004, 65(2): 219-227.
[25] SUGIMOTO K, NOMURA K, NISHIURA H, et al. Sucrose phosphorylases catalyze transglycosylation reactions on carboxylic acid compounds[J]. Biologia, 2008, 63(6): 1 015-1 019.
[26] AERTS D, VERHAEGHE T F, ROMAN B I, et al. Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors[J]. Carbohydrate Research, 2011, 346(13): 1 860-1 867.
[27] JIANG W, WANG Y. Improving catalytic efficiency and changing substrate spectrum for asymmetric biocatalytic reductive amination[J]. Journal of Microbiology and Biotechnology, 2020, 30(1): 146-154.
[28] LIU X, WANG H, WANG B, et al. High-level extracellular protein expression in Bacillus subtilis by optimizing strong promoters based on the transcriptome of Bacillus subtilis and Bacillus megaterium[J]. Protein Expression and Purification, 2018, 151: 72-77.
[29] LIU X, WANG H, WANG B, et al. Efficient production of extracellular pullulanase in Bacillus subtilis ATCC6051 using the host strain construction and promoter optimization expression system[J]. Microbial Cell Factories, 2018, 17(1): 163.
[30] KRAUS M, GRIMM C, SEIBEL J. Reversibility of a point mutation induced domain shift: expanding the conformational space of a sucrose phosphorylase[J]. Scientific Reports, 2018, 8(1): 10 490.
[31] VERHAEGHE T, DIRICKS M, AERTS D, et al. Mapping the acceptor site of sucrose phosphorylase from Bifidobacterium adolescentis by alanine scanning[J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 96: 81-88.
[32] KRAUS M, GRIMM C, SEIBEL J. Redesign of the active site of sucrose phosphorylase through a clash-induced cascade of loop shifts[J]. Chembiochem, 2016, 17(1): 33-36.
[33] KRAUS M, GORL J, TIMM M, et al. Synthesis of the rare disaccharide nigerose by structure-based design of a phosphorylase mutant with altered regioselectivity[J]. Chemical Communnication, 2016, 52(25): 4 625-4 627.
[34] KRAUS M, GRIMM C, SEIBEL J. Switching enzyme specificity from phosphate to resveratrol glucosylation[J]. Chemical Communication, 2017, 53(90): 12 181-12 184.
[35] MUELLER M, NIDETZKY B. Dissecting differential binding of fructose and phosphate as leaving group/nucleophile of glucosyl transfer catalyzed by sucrose phosphorylase[J]. FEBS Letters, 2007, 581(20): 3 814-3 818.