研究报告

氨氮对淀粉酶产色链霉菌产ε-聚赖氨酸的影响

  • 魏希庆 ,
  • 郭凤柱 ,
  • 胡春磊 ,
  • 宋富 ,
  • 赵卓 ,
  • 谭之磊 ,
  • 贾士儒
展开
  • 1(天津科技大学 生物工程学院,工业发酵微生物教育部重点实验室,天津,300457)
    2(省部共建食品营养与安全国家重点实验室(天津科技大学),天津,300457)
    3(天津市微生物代谢与发酵过程控制技术工程中心,天津,300457)
硕士研究生(贾士儒教授和谭之磊副研究员为共同通讯作者,E-mail:jiashiru@tust.edu.cn;tanzhilei@tust.edu.cn)

收稿日期: 2020-01-07

  网络出版日期: 2020-08-04

基金资助

国家自然科学基金(31771952);国家重点研发计划课题项目(2018YFD0400205)

Effect of ammonia nitrogen on the production of ε-poly-L-lysinein Streptomyces diastatochromogenes

  • WEI Xiqing ,
  • GUO Fengzhu ,
  • HU Chunlei ,
  • SONG Fu ,
  • ZHAO Zhuo ,
  • TAN Zhilei ,
  • JIA Shiru
Expand
  • 1(Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, College of Bioengineering,Tianjin University of Science & Technology, Tianjin 300457, China)
    2(State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China)
    3(Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China)

Received date: 2020-01-07

  Online published: 2020-08-04

摘要

ε-聚赖氨酸(ε-poly-L-lysine,ε-PL)是一种新型广谱天然防腐剂。由于生产成本较高,价格昂贵,限制了其在食品工业上的广泛应用。为降低生产成本,研究了不同氨氮(NH+4-N)浓度对淀粉酶产色链霉菌生产ε-聚赖氨酸的影响。摇瓶发酵试验结果表明,当NH+4-N初始质量浓度为0.5 g/L时,提高了天冬氨酸激酶(aspartokinase,Ask)和聚赖氨酸合成酶(polylysine synthetase,Pls)的活力,发酵96 h, ε-PL产量达到0.95 g/L,与对照组相比提高了15.13%。5 L发酵罐分批发酵和流加发酵实验确定了一种有效提高ε-PL产量的方法:初始NH+4-N质量浓度2.5 g/L,发酵过程中流加(NH4)2SO4使NH+4-N质量浓度维持在0.5 g/L。采用此工艺进行补料分批发酵,ε-PL最高产量达到27.67 g/L,与对照组相比提高了17.72%。

本文引用格式

魏希庆 , 郭凤柱 , 胡春磊 , 宋富 , 赵卓 , 谭之磊 , 贾士儒 . 氨氮对淀粉酶产色链霉菌产ε-聚赖氨酸的影响[J]. 食品与发酵工业, 2020 , 46(13) : 24 -29 . DOI: 10.13995/j.cnki.11-1802/ts.023292

Abstract

ε-poly-L-lysine(ε-PL) is a new type of broad-spectrum natural food preservative. Because of its high cost and high price, its application in food industry is limited. In order to reduce the production cost, the effect of ammonia nitrogen (NH+4-N) concentration on the production of ε-PL by Streptomyces diastatochromogenes was studied. Results indicated that the yield of ε-PL was 0.95 g/L,improved by 15.13% compared with the control group and the activities of Ask and Pls were improved when the initial concentration of NH+4-N was 0.5 g/L fermented in shaking flasks for 96 h. An effective increasing ε-PL production method was verified by the batch and fed-batch fermentations: The initial concentration of NH+4-N was 2.5 g/L, ammonium sulfate maintains the concentration of 0.5 g/L in 5 L the fermenter by fed-batch. In this method, the final yield of ε-PL was 27.67 g/L, which was improved by 17.72% contrasting to the control group.

参考文献

[1] 贾士儒.生物防腐剂[M].北京:中国工业出版社, 2009.
[2] 谭之磊,贾士儒,赵颖,等.淀粉酶产色链霉菌TUST2中ε-聚赖氨酸降解酶的纯化和性质[J]. 高等学校化学学报, 2009, 30(12): 2 404-2 408.
[3] 中华人民共和国国家卫生和计划生育委员会.关于批准ε-聚赖氨酸等4种食品添加剂新品种等的公告(2014年第5号)[J].中国食品添加剂,2014(3): 213-221.
[4] 李双,颜鹏,曾晨,等.Genome shuffling 筛选ε-聚赖氨酸高产菌及其对代谢流量分配的影响[J].微生物学通报,2016,43(12): 2 568-2 577.
[5] SHIMA S, SAKAI H. Poly-L-lysine produced by Streptomyces Part Ⅲ. Chenical studies[J]. Agricultural Biological Chemistry, 1981, 45(11): 2 503-2 508.
[6] KAHAR P, IWATA T, HIRAKL S, et al. Enhancement of ε-Poly-lysine production by Streptomyces albulus strain 410 using pH control [J]. Journal of Bioscience and Bioengineering, 2001, 91(2): 190-194.
[7] REN X, CHEN X, ZENG X, et al. Acidic pH shock induced overproduction of ε-poly-L-lysine in fed-batch fermentation by Streptomyces sp.M-Z18 from agro-industrial by-products[J].Bioprocess and Biosystems Engineering,2015, 38(6): 1 113-1 125.
[8] GUO F Z, ZHENG H R, ZHANG X, et al. Effect of yeast extract on production of ε-poly-L-lysine by Streptomyces diastatochromogenes[C].2016 International Conference on Applied Biotechology. Tianjin, 2016:235-244.
[9] WANG G,JIA S,WANG T, et al.Effect of ferrous ion on ε-poly-L-lysine biosynthesis by Streptomyces diastatochromogenes CGMCC3145 [J].Current Microbiology,2011,62(3): 1 062-1 067.
[10] 谭之磊,宋帅,王甜,等.甘氨酸对淀粉酶产色链霉菌Cbγ4 产ε-聚赖氨酸的影响[J].中国酿造,2012,31(9):27-29.
[11] 宋庆超,贾士儒,王国良,等.添加L-赖氨酸对淀粉酶产色链霉菌 CGMCC3145 生物合成 ε-聚赖氨酸的影响 [C].International Conference on Bio-Inspired Systems and Signal Processing.Xiamen,2010:226-229.
[12] 薛晓明,吴振强,吴清平,等.添加ATP和生物素优化ε-聚赖氨酸发酵的研究[J].中国酿造,2012,31(1):72-76.
[13] XU Z, BO F, XIA J, et al. Effects of oxygen-vectors on the synthesis of epsilon-poly-lysine and the metabolic characterization of Streptomyces albulus PD-1[J]. Biochemical Engineering Journal, 2015, 94: 58-64.
[14] 张肖静,李冬,梁瑜海,等.氨氮浓度对CANON工艺性能及微生物特性的影响[J]. 中国环境科学,2014,34(7):1 715-1 721.
[15] 冯宁,白亚磊,徐庆阳,等. 氮源及其补加策略对L-缬氨酸发酵的影响[J].食品与发酵工业, 2011, 37(4): 1-6.
[16] HAMANO Y, YOSHIDA T, KITO M, et al. Biological function of the pld gene product that degrades epsilon-poly-L-lysine in Streptomyces albulus[J]. Applied Microbiology & Biotechnology, 2006, 72 (1):173-181.
[17] Shih I L,Shen M H.Application of response surface methodology to optimize production of ε-poly-L-lysine by Streptomyces albulus IFO14147[J].Enzyme and Microbial Technology,2005,39(1):15-21.
[18] Bankar S B,Singhal R S.Optimization of poly-ε-lysine production by Streptomyces noursei NRRL 5126[J].Bioresource Technology,2010,101(21):8 370-8 375.
[19] 陈旭升,董难,毛忠贵. 碳源和氮源流加方式对ε-聚赖氨酸补料-分批发酵过程的影响[J].食品与发酵工业,2013,39(8): 47-52.
[20] SONG S, TAN Z L, GUO F Z, et al. Breeding of Streptomyces diastatochromogenes for mass-producing ε-poly-L-lysine by composite mutation[J]. Proceedings of the 2012 International Conference on Applied Biotechnology, Lecture Notes in Electrical Engineering, 2014(249):359-366.
[21] 曹伟锋,谭之磊,袁国栋,等.ε-聚赖氨酸测定方法的改进[J].天津科技大学学报,2007,22(2):9-11;32.
[22] 梁剑光,朱玲,徐正军.靛酚蓝-分光光度法测定发酵液中氨态氮含量研究[J].食品与发酵工业,2006,32(9):134-137.
[23] HAMANO Y, NICCHU I, SHIMIZU T, et al.Epsilon-poly-L-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase[J].Applied Microbiology and Biotechnology,2007,76(4):873-882.
[24] KITO N, MARUYAMA C, YAMANAKA K,et al.Mutational analysis of the three tandem domains of ε-poly-L-lysine synthetase catalyzing the l-lysine polymerization reaction[J].Journal of Bioscience and Bioengineering,2013,115(5):523-526.
[25] HAMANO Y, KITO N, KITA A,et al.Epsilon-poly-L-lysine peptide chain length regulated by the linkers connecting the transmembrane domains of epsilon-poly-L-lysine synthetase[J].Applied and Environmental Microbiology,2014,80(16):4 993-5 000.
[26] BRZONKALIK K, HERRLING T, SYLDATK C, et al.The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata[J].International Journal of Food Microbiology, 2011, 147(2): 120-126.
[27] SHIMA H, SAKAI H. Poly-L-lysine produced by Streptomyces partⅡ. Taxonomy and fermentation studies[J]. Agricultural and Biological Chemistry, 1981, 45(11): 2 497-2 502.
[28] FENG X, XU H, XU X, et al. Purification and some properties of ε-poly-L-lysine-degrading enzyme from Kitasatospora sp. CCTCC M205012[J]. Process Biochemistry, 2008, 43(6): 667-672.
[29] YAMANAKA K, MARUYAMA C, TAKAGI H, et al. ε-Poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase[J]. Nature Chemical Biology, 2008, 4(12): 766-772.
[30] WITTMANN C, BECKE J. The L-lysine story: from metabolic pathways to industrial production[J].Microbiology Monographs,2007:39-70.
[31] 赵德周.基于代谢工程构建大肠杆菌L-赖氨酸高产菌[D].重庆:重庆大学,2017.
文章导航

/