[1] GEORGE KERRY R, PATRA J K, GOUDA S, et al. Benefaction of probiotics for human health: A review [J]. J Food Drug Anal, 2018, 26(3): 927-939.
[2] 吴蜀豫, 陆冉. FAO/WHO《食品益生菌评价指南》[J]. 中国食品卫生杂志, 2003, 15(4): 377-379.
[3] RAMÍREZ-PÉREZ O, CRUZ-RAMÓN V, CHINCHILLA-LÓPEZ P, et al. The role of the gut microbiota in bile acid metabolism [J]. Annals of Hepatology, 2017, 16: 15-20.
[4] YANG Y, LIU Y, ZHOU S, et al. Bile salt hydrolase can improve Lactobacillus plantarum survival in gastrointestinal tract by enhancing their adhesion ability [J]. Fems Microbiology Letters, 2019, 366(8): 1-8.
[5] ADEBOLA O O, CORCORAN O, MORGAN W A. Prebiotics may alter bile salt hydrolase activity: Possible implications for cholesterol metabolism [J]. Pharma Nutrition, 2020: 12.DOI:10.1016/j.phanu.2020.10018.2.
[6] DONG Z, LEE B H. Bile salt hydrolases: Structure and function, substrate preference, and inhibitor development [J]. Protein Science, 2018, 10: 1 742-1 754.
[7] STELLWAG E J, HYLEMON P B. Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp [J]. Biochimica Et Biophysica Acta, 1976, 452(1): 165-176.
[8] ELKINS C A, MOSER S A, SAVAGE D C. Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species [J]. Microbiology, 2001, 147(12): 3 403.
[9] BI J, FANG F, LU S, et al. New insight into the catalytic properties of bile salt hydrolase [J]. Journal of Molecular Catalysis B Enzymatic, 2013, 96: 46-51.
[10] SURESH C G, PUNDLE A V, SIVARAMAN H, et al. Penicillin V acylase crystal structure reveals new Ntn-hydrolase family members [J]. Nat Struct Biol, 1999, 6(5): 414-416.
[11] LIANG L, YI Y, LV Y, et al. A comprehensive genome survey provides novel insights into bile salt hydrolase (BSH) in Lactobacillaceae [J]. Molecules, 2008, 23(5):1 157.
[12] CHAND D, AVINASH V S, YADAV Y, et al. Molecular features of bile salt hydrolases and relevance in human health [J]. Biochimica Et Biophysica Acta General Subjects, 2016, 1861(1): 2 981-2 991.
[13] MCAULIFFE O, CANO R J, KLAENHAMMER T R. Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM [J]. Applied and Environmental Microbiology, 2005, 71(8): 4 925-4 929.
[14] OZTURK M, ONAL C, BA N M. Critical F129 and L138 in loop III of bile salt hydrolase (BSH) in Lactobacillus plantarum B14 are essential for the catalytic activity and substrate specificity [J]. Food Biotechnology, 2019, 33(4): 325-337.
[15] XIONG Z Q, WANG Q H, KONG L H, et al. Short communication: Improving the activity of bile salt hydrolases in Lactobacillus casei based on in silico molecular docking and heterologous expression [J]. J Dairy Sci, 2017, 100(2): 975-980.
[16] LAMBERT J M, BONGERS R S, DE VOS W M, et al. Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1 [J]. Appl Environ Microbiol, 2008, 74(15): 4 719-4 726.
[17] 王政, 张大伟. 某些抗生素类生长促进剂和胆盐水解酶抑制剂作用机制 [J]. 中国畜牧杂志, 2016, 52(10): 38-42.
[18] LIN J. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers [J]. Front Microbiol, 2014, 5: 33.
[19] SHELTON N W, TOKACH M D, NELSSEN J L, et al. Effects of copper sulfate, tri-basic copper chloride, and zinc oxide on weanling pig performance [J]. J Anim Sci, 2011, 89(8): 2 440-2 451.
[20] LIU Z H, LU L, LI S F, et al. Effects of supplemental zinc source and level on growth performance, carcass traits, and meat quality of broilers [J]. Poult Sci, 2011, 90(8): 1 782-1 790.
[21] SMITH K, ZENG X, LIN J. Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system [J]. PLoS One, 2014, 9(1): e85344.
[22] ADHIKARI A A, SEEGAR T C M, FICARRO S B, et al. Development of a covalent inhibitor of gut bacterial bile salt hydrolases [J]. Nature Chemical Biology, 2020: 318-326.DOI:10.1038/s41589-o20-0467-3.
[23] HUIJGHEBAERT S M, MERTENS J A, EYSSEN H J. Isolation of a bile salt sulfatase-producing Clostridium strain from rat intestinal microflora [J]. Appl Environ Microbiol, 1982, 43(1): 185-192.
[24] VAN E J, CELIS P, DE P G, et al. Tauroconjugation of cholic acid stimulates 7 alpha-dehydroxylation by fecal bacteria [J]. Appl Environ Microbiol, 1996, 62(2): 656-661.
[25] BEGLEY M, HILL C, GAHAN C G. Bile salt hydrolase activity in probiotics [J]. Appl Environ Microbiol, 2006, 72(3): 1 729-1 738.
[26] AXMANN M, STROBL W M, PLOCHBERGER B, et al. Cholesterol transfer at the plasma membrane [J]. Atherosclerosis, 2019, 290: 111-117.
[27] BUSTOS A Y, FONT DE VALDEZ G, FADDA S, et al. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health [J]. Food Research International, 2018, 112: 250-262.
[28] BEGLEY M, SLEATOR R D, GAHAN C G, et al. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes [J]. Infect Immun, 2005, 73(2): 894-904.
[29] BUSTOS A Y, SAAVEDRA L, VALDEZ G F D, et al. Relationship between bile salt hydrolase activity, changes in the internal pH and tolerance to bile acids in lactic acid bacteria [J]. Biotechnology Letters, 2012, 8: 1 511-1 518.
[30] GARIDEL P H A, KNAUF K, ET AL. Membranolytic activity of bile salts influence of biological membrane properties and composition [J]. Molecules, 2007, 12(10): 2 292-2 326.
[31] DUSSURGET O, CABANES D, DEHOUX P, et al. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis [J]. Mol Microbiol, 2002, 45(4): 1 095-1 106.
[32] DELPINO M V, MARCHESINI M I, ESTEIN S M, et al. A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice [J]. Infection and Immunity, 2007.DOI:10.1128/IAI.00952-06.
[33] CHIEN Y L, WU L Y, LEE T C, et al. Cholesterol-lowering effect of phytosterol-containing Lactic-fermented milk powder in hamsters [J]. Food Chemistry, 2010, 3: 1 121-1 126.
[34] KHARE A, GAUR S. Cholesterol-lowering effects of Lactobacillus species [J]. Current Microbiology, 2020, 4: 638-644.
[35] MALPELIET A, TARANTO2 M P, CRAVERO3 R C, et al. Effect of daily consumption of Lactobacillus reuteri CRL 1098 on cholesterol reduction in hypercholesterolemic subjects [J]. Food and Nutrition Sciences, 2015,17: 1 583-1 590.
[36] WANG G, HUANG W, XIA Y, et al. Cholesterol-lowering potentials of Lactobacillus strain overexpression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice [J]. Food and Function, 2019, 10(3): 1 684-1 695.
[37] GUO L, WANG L, LIU F, et al. Effect of bile salt hydrolase-active Lactobacillus plantarum KLDS 1.0344 on cholesterol metabolism in rats fed a high-cholesterol diet [J]. Journal of Functional Foods, 2019:61.DOI:10.1016/jff.2019.103497.
[38] LIANG X, LV Y, ZHANG Z, et al. Study on intestinal survival and cholesterol metabolism of probiotics [J]. LWT, 2020: 124.DOI:10.1016/j.lwt.2020.109132.
[39] TSAI C C, LIN P P, HSIEH Y M, et al. Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo [J]. Scientific World Journal, 2014, 2014: 690 752.
[40] LE B, YANG S H. Identification of a novel potential probiotic Lactobacillus plantarum FB003 isolated from salted-fermented shrimp and its effect on cholesterol absorption by regulation of NPC1L1 and PPARalpha [J]. Probiotics Antimicrob Proteins, 2019, 11(3): 785-793.
[41] JONES B V, BEGLEY M, HILL C, et al. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome [J]. Proc Natl Acad Sci USA, 2008, 105(36): 13 580-13 585.
[42] BERNSTEIN C N, ELIAKIM A, FEDAIL S, et al. World gastroenterology organisation global guidelines inflammatory bowel disease [J]. J Clin Gastroenterol, 2016, 50(10): 803-818.
[43] PALUMBO V D, ROMEO M, MARINO GAMMAZZA A, et al. The long-term effects of probiotics in the therapy of ulcerative colitis: A clinical study [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2016, 160(3): 372-377.
[44] YOUNGE L. An overview of inflammatory bowel disease [J]. Nurs Stand, 2019, 34(1): 75-82.
[45] CURRO D, IANIRO G, PECERE S, et al. Probiotics, fibre and herbal medicinal products for functional and inflammatory bowel disorders [J]. Br J Pharmacol, 2017, 174(11): 1 426-1 449.
[46] ABRAHAM B P, QUIGLEY E M M. Probiotics in inflammatory bowel disease [J]. Gastroenterol Clin North Am, 2017, 46(4): 769-782.
[47] DUBOC H, RAJCA S, RAINTEAU D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases [J]. Gut, 2013, 62(4): 531-539.
[48] THANISSERY R, WINSTON J A, THERIOT C M. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids [J]. Anaerobe, 2017: 86-100.DOI:10.1016/j.jff.2020.103854.
[49] XIA Y J, CHEN Y, YANG J, et al. Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating TLR4/MyD88/NF-κB pathway and gut microbiota composition [J]. Journal of Functional Foods, 2019,10(5):543-553.