综述与专题评论

益生菌中胆盐水解酶作用机制研究进展

  • 唐洪玉 ,
  • 宋馨 ,
  • 夏永军 ,
  • 艾连中 ,
  • 王光强
展开
  • (上海理工大学 医疗器械与食品学院,上海食品微生物工程技术研究中心,上海,200093)
硕士研究生(王光强副教授为通讯作者,E-mail:1015wanggq@163.com)

收稿日期: 2020-03-16

  网络出版日期: 2020-08-04

基金资助

国家重点研发计划项目(2018YFD0501600);上海市科技兴农项目(2019-02-08-00-07-F01152)

Research progress on the mechanism of bile salt hydrolase in probiotics

  • TANG Hongyu ,
  • SONG Xin ,
  • XIA Yongjun ,
  • AI Lianzhong ,
  • WANG Guangqiang
Expand
  • 1(Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology, Shanghai 200093, China)

Received date: 2020-03-16

  Online published: 2020-08-04

摘要

胆盐水解酶(bile salt hydrolase, BSH)是微生物生长、繁殖过程中产生的一种代谢产物,该酶具有降解结合胆盐的能力。大量研究发现,益生菌可通过BSH来提高其在肠道中的存活率和稳定性,还能通过BSH参与胆汁酸调控而实现其部分益生功能,如降胆固醇等,因此益生菌BSH一直是研究的热点。为深入了解BSH,该文对BSH特性、在益生菌中的分布、生理功能以及对益生菌降低胆固醇、缓解炎症性肠病等方面发挥的作用进行了综述,期望为产BSH的益生菌在食品、保健品及临床应用提供理论依据。

本文引用格式

唐洪玉 , 宋馨 , 夏永军 , 艾连中 , 王光强 . 益生菌中胆盐水解酶作用机制研究进展[J]. 食品与发酵工业, 2020 , 46(13) : 286 -292 . DOI: 10.13995/j.cnki.11-1802/ts.023950

Abstract

Bile salt hydrolase (BSH) is a kind of metabolite, which is produced by microorganisms during the period of growth and reproduction. This enzyme has the ability to catalyzes hydrolysis of conjugated bile salts into amino acid and bile acids. A number of studies have shown that probiotics can increase the survival rate and stability in the intestine through BSH. Moreover, probiotics can achieve part of potential health-promoting functions by BSH participating in the regulation of bile acids, such as cholesterol lowering. Therefore, BSH in probiotics has always been a research hotspot. In order to understand BSH deeply, this article mainly reviewed the research progress on characteristics, distribution, physiological functions, and its role in reducing cholesterol and alleviating inflammatory bowel disease, aiming at providing theoretical basis in food, Health products and clinical applications of BSH-producing probiotics.

参考文献

[1] GEORGE KERRY R, PATRA J K, GOUDA S, et al. Benefaction of probiotics for human health: A review [J]. J Food Drug Anal, 2018, 26(3): 927-939.
[2] 吴蜀豫, 陆冉. FAO/WHO《食品益生菌评价指南》[J]. 中国食品卫生杂志, 2003, 15(4): 377-379.
[3] RAMÍREZ-PÉREZ O, CRUZ-RAMÓN V, CHINCHILLA-LÓPEZ P, et al. The role of the gut microbiota in bile acid metabolism [J]. Annals of Hepatology, 2017, 16: 15-20.
[4] YANG Y, LIU Y, ZHOU S, et al. Bile salt hydrolase can improve Lactobacillus plantarum survival in gastrointestinal tract by enhancing their adhesion ability [J]. Fems Microbiology Letters, 2019, 366(8): 1-8.
[5] ADEBOLA O O, CORCORAN O, MORGAN W A. Prebiotics may alter bile salt hydrolase activity: Possible implications for cholesterol metabolism [J]. Pharma Nutrition, 2020: 12.DOI:10.1016/j.phanu.2020.10018.2.
[6] DONG Z, LEE B H. Bile salt hydrolases: Structure and function, substrate preference, and inhibitor development [J]. Protein Science, 2018, 10: 1 742-1 754.
[7] STELLWAG E J, HYLEMON P B. Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp [J]. Biochimica Et Biophysica Acta, 1976, 452(1): 165-176.
[8] ELKINS C A, MOSER S A, SAVAGE D C. Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species [J]. Microbiology, 2001, 147(12): 3 403.
[9] BI J, FANG F, LU S, et al. New insight into the catalytic properties of bile salt hydrolase [J]. Journal of Molecular Catalysis B Enzymatic, 2013, 96: 46-51.
[10] SURESH C G, PUNDLE A V, SIVARAMAN H, et al. Penicillin V acylase crystal structure reveals new Ntn-hydrolase family members [J]. Nat Struct Biol, 1999, 6(5): 414-416.
[11] LIANG L, YI Y, LV Y, et al. A comprehensive genome survey provides novel insights into bile salt hydrolase (BSH) in Lactobacillaceae [J]. Molecules, 2008, 23(5):1 157.
[12] CHAND D, AVINASH V S, YADAV Y, et al. Molecular features of bile salt hydrolases and relevance in human health [J]. Biochimica Et Biophysica Acta General Subjects, 2016, 1861(1): 2 981-2 991.
[13] MCAULIFFE O, CANO R J, KLAENHAMMER T R. Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM [J]. Applied and Environmental Microbiology, 2005, 71(8): 4 925-4 929.
[14] OZTURK M, ONAL C, BA N M. Critical F129 and L138 in loop III of bile salt hydrolase (BSH) in Lactobacillus plantarum B14 are essential for the catalytic activity and substrate specificity [J]. Food Biotechnology, 2019, 33(4): 325-337.
[15] XIONG Z Q, WANG Q H, KONG L H, et al. Short communication: Improving the activity of bile salt hydrolases in Lactobacillus casei based on in silico molecular docking and heterologous expression [J]. J Dairy Sci, 2017, 100(2): 975-980.
[16] LAMBERT J M, BONGERS R S, DE VOS W M, et al. Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1 [J]. Appl Environ Microbiol, 2008, 74(15): 4 719-4 726.
[17] 王政, 张大伟. 某些抗生素类生长促进剂和胆盐水解酶抑制剂作用机制 [J]. 中国畜牧杂志, 2016, 52(10): 38-42.
[18] LIN J. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers [J]. Front Microbiol, 2014, 5: 33.
[19] SHELTON N W, TOKACH M D, NELSSEN J L, et al. Effects of copper sulfate, tri-basic copper chloride, and zinc oxide on weanling pig performance [J]. J Anim Sci, 2011, 89(8): 2 440-2 451.
[20] LIU Z H, LU L, LI S F, et al. Effects of supplemental zinc source and level on growth performance, carcass traits, and meat quality of broilers [J]. Poult Sci, 2011, 90(8): 1 782-1 790.
[21] SMITH K, ZENG X, LIN J. Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system [J]. PLoS One, 2014, 9(1): e85344.
[22] ADHIKARI A A, SEEGAR T C M, FICARRO S B, et al. Development of a covalent inhibitor of gut bacterial bile salt hydrolases [J]. Nature Chemical Biology, 2020: 318-326.DOI:10.1038/s41589-o20-0467-3.
[23] HUIJGHEBAERT S M, MERTENS J A, EYSSEN H J. Isolation of a bile salt sulfatase-producing Clostridium strain from rat intestinal microflora [J]. Appl Environ Microbiol, 1982, 43(1): 185-192.
[24] VAN E J, CELIS P, DE P G, et al. Tauroconjugation of cholic acid stimulates 7 alpha-dehydroxylation by fecal bacteria [J]. Appl Environ Microbiol, 1996, 62(2): 656-661.
[25] BEGLEY M, HILL C, GAHAN C G. Bile salt hydrolase activity in probiotics [J]. Appl Environ Microbiol, 2006, 72(3): 1 729-1 738.
[26] AXMANN M, STROBL W M, PLOCHBERGER B, et al. Cholesterol transfer at the plasma membrane [J]. Atherosclerosis, 2019, 290: 111-117.
[27] BUSTOS A Y, FONT DE VALDEZ G, FADDA S, et al. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health [J]. Food Research International, 2018, 112: 250-262.
[28] BEGLEY M, SLEATOR R D, GAHAN C G, et al. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes [J]. Infect Immun, 2005, 73(2): 894-904.
[29] BUSTOS A Y, SAAVEDRA L, VALDEZ G F D, et al. Relationship between bile salt hydrolase activity, changes in the internal pH and tolerance to bile acids in lactic acid bacteria [J]. Biotechnology Letters, 2012, 8: 1 511-1 518.
[30] GARIDEL P H A, KNAUF K, ET AL. Membranolytic activity of bile salts influence of biological membrane properties and composition [J]. Molecules, 2007, 12(10): 2 292-2 326.
[31] DUSSURGET O, CABANES D, DEHOUX P, et al. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis [J]. Mol Microbiol, 2002, 45(4): 1 095-1 106.
[32] DELPINO M V, MARCHESINI M I, ESTEIN S M, et al. A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice [J]. Infection and Immunity, 2007.DOI:10.1128/IAI.00952-06.
[33] CHIEN Y L, WU L Y, LEE T C, et al. Cholesterol-lowering effect of phytosterol-containing Lactic-fermented milk powder in hamsters [J]. Food Chemistry, 2010, 3: 1 121-1 126.
[34] KHARE A, GAUR S. Cholesterol-lowering effects of Lactobacillus species [J]. Current Microbiology, 2020, 4: 638-644.
[35] MALPELIET A, TARANTO2 M P, CRAVERO3 R C, et al. Effect of daily consumption of Lactobacillus reuteri CRL 1098 on cholesterol reduction in hypercholesterolemic subjects [J]. Food and Nutrition Sciences, 2015,17: 1 583-1 590.
[36] WANG G, HUANG W, XIA Y, et al. Cholesterol-lowering potentials of Lactobacillus strain overexpression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice [J]. Food and Function, 2019, 10(3): 1 684-1 695.
[37] GUO L, WANG L, LIU F, et al. Effect of bile salt hydrolase-active Lactobacillus plantarum KLDS 1.0344 on cholesterol metabolism in rats fed a high-cholesterol diet [J]. Journal of Functional Foods, 2019:61.DOI:10.1016/jff.2019.103497.
[38] LIANG X, LV Y, ZHANG Z, et al. Study on intestinal survival and cholesterol metabolism of probiotics [J]. LWT, 2020: 124.DOI:10.1016/j.lwt.2020.109132.
[39] TSAI C C, LIN P P, HSIEH Y M, et al. Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo [J]. Scientific World Journal, 2014, 2014: 690 752.
[40] LE B, YANG S H. Identification of a novel potential probiotic Lactobacillus plantarum FB003 isolated from salted-fermented shrimp and its effect on cholesterol absorption by regulation of NPC1L1 and PPARalpha [J]. Probiotics Antimicrob Proteins, 2019, 11(3): 785-793.
[41] JONES B V, BEGLEY M, HILL C, et al. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome [J]. Proc Natl Acad Sci USA, 2008, 105(36): 13 580-13 585.
[42] BERNSTEIN C N, ELIAKIM A, FEDAIL S, et al. World gastroenterology organisation global guidelines inflammatory bowel disease [J]. J Clin Gastroenterol, 2016, 50(10): 803-818.
[43] PALUMBO V D, ROMEO M, MARINO GAMMAZZA A, et al. The long-term effects of probiotics in the therapy of ulcerative colitis: A clinical study [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2016, 160(3): 372-377.
[44] YOUNGE L. An overview of inflammatory bowel disease [J]. Nurs Stand, 2019, 34(1): 75-82.
[45] CURRO D, IANIRO G, PECERE S, et al. Probiotics, fibre and herbal medicinal products for functional and inflammatory bowel disorders [J]. Br J Pharmacol, 2017, 174(11): 1 426-1 449.
[46] ABRAHAM B P, QUIGLEY E M M. Probiotics in inflammatory bowel disease [J]. Gastroenterol Clin North Am, 2017, 46(4): 769-782.
[47] DUBOC H, RAJCA S, RAINTEAU D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases [J]. Gut, 2013, 62(4): 531-539.
[48] THANISSERY R, WINSTON J A, THERIOT C M. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids [J]. Anaerobe, 2017: 86-100.DOI:10.1016/j.jff.2020.103854.
[49] XIA Y J, CHEN Y, YANG J, et al. Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating TLR4/MyD88/NF-κB pathway and gut microbiota composition [J]. Journal of Functional Foods, 2019,10(5):543-553.
文章导航

/