综述与专题评论

气/液态氮在食品加工技术中的应用机制和研究进展

  • 程丽娜 ,
  • 余元善 ,
  • 吴炜俊 ,
  • 邹颖 ,
  • 邹波 ,
  • 李俊 ,
  • 徐玉娟 ,
  • 肖更生
展开
  • 1(广东省农业科学院蚕业与农产品加工研究所/农业部功能食品重点实验室/广东省农产品加工重点实验室,广东 广州,510610)
    2(仲恺农业工程学院,广东 广州,510225)
    3(华南农业大学 食品学院,广东 广州,510640)
博士,助理研究员(徐玉娟研究员和肖更生研究员为共同通讯作者,E-mail: guoshuxuyujuan@163.com;guoshuxgs@163.com)

收稿日期: 2020-03-12

  网络出版日期: 2020-08-04

基金资助

广东省重点领域研发计划项目(2020B020225002);广东省农业科学院院长基金(201806B);广东省农业科学院果蔬加工研究团队项目 (201604TD);广东省现代农业技术体系创新团队建设专项资金(2019KJ117);广东省农业科创新体系管理项目(0835-190Z22404211)

Application mechanism and research progress of gaseous and liquidnitrogen in food processing

  • CHENG Lina ,
  • YU Yuanshan ,
  • WU Weijun ,
  • ZOU Ying ,
  • ZOU Bo ,
  • LI Jun ,
  • XU Yujuan ,
  • XIAO Gengsheng
Expand
  • 1(Sericulture & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory ofFunctional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing,Guangzhou 510610, China)
    2(Zhongkai University of Agriculture Engineering, Guangzhou 510225, China)
    3(South China Agriculture University, Food College, Guangzhou 510642, China)

Received date: 2020-03-12

  Online published: 2020-08-04

摘要

综述了气/液态氮在食品加工的应用机制与研究进展,主要包括利用其环境调节性、电离性、相变结晶性、气化吸热性的气调包装、低温等离子体杀菌/改性、气体水合物浓缩、液氮速冻技术。简述了氮气和液氮的理化性质,分析了各项技术的应用原理、现状与挑战。其中低温等离子体杀菌/改性和水合物浓缩是新兴技术,需扩展技术研究对象、扩大适用范围、研发稳定的新装备,未来应用前景可观。气调包装和液氮速冻已工业化应用,但由于食品物料的复杂性和消费者需求的升级,这两项技术仍需不断进行改进,而重点在于技术的强强联合、设备多元化与工厂化。

本文引用格式

程丽娜 , 余元善 , 吴炜俊 , 邹颖 , 邹波 , 李俊 , 徐玉娟 , 肖更生 . 气/液态氮在食品加工技术中的应用机制和研究进展[J]. 食品与发酵工业, 2020 , 46(13) : 299 -304 . DOI: 10.13995/j.cnki.11-1802/ts.023936

Abstract

This paper reviewed the application mechanism and research progress of gaseous and liquid nitrogen in food processing, including modified atmosphere package, cold plasma and modification, gas hydrate concentrating, and liquid nitrogen freezing, according to the properties of environment adjustment, ionization, crystallization, and gasification. The physical and chemical characteristics of gaseous and liquid nitrogen were introduced. The application mechanism, current state, and future challenge of the above technologies were analyzed. Cold plasma and modification and gas hydrate concentrating were belonged to novel technique and mainly stay in the lab the research stage, but with the wonderful prospect; the emphasis of future work was to enlarge the research objects, expand the application scope and develop stable devices. Modified atmosphere package and liquid nitrogen freezing have been applied in the industrial process, however, due to the complicated properties of food and upgrade requirements of consumers, both of them still need to be improved, which include the combination of other techniques and diversification and scale of equipment.

参考文献

[1] BOULETIS A D, ARVANITOYANNIS I S, HADJICHRISTODOULOU C. Application of modified atmosphere packaging on aquacultured fish and fish products: A review [J]. Critical Reviews in Food Science and Nutrition, 2017, 57(11):2 263-2 285.
[2] SHEN X, ZHANG M, DEVAHASTIN S, et al. Effects of pressurized argon and nitrogen treatments in combination with modified atmosphere on quality characteristics of fresh-cut potatoes [J]. Postharvest Biology and Technology, 2019, 149:159-165.
[3] WILSON M D, STANLEY R A, EYLES A, et al. Innovative processes and technologies for modified atmosphere packaging of fresh and fresh-cut fruits and vegetables [J]. Critical Reviews in Food Science and Nutrition, 2019, 59(3):411-422.
[4] THIRUMDAS R, TRIMUKHE A, DESHMUKH R R, et al. Functional and rheological properties of cold plasma treated rice starch [J]. Carbohydr Polym, 2017, 157:1 723-1 731.
[5] MANDAL R, SINGH A, PRATAP SINGH A. Recent developments in cold plasma decontamination technology in the food industry [J]. Trends in Food Science & Technology, 2018, 80:93-103.
[6] EKEZIE F G C, SUN D W, CHENG J H. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends [J]. Trends in Food Science & Technology, 2017, 69:46-58.
[7] MISRA N N, SCHL TER O. Securing the food production chain through cold plasma technologies [J]. Innovative Food Science & Emerging Technologies, 2019, 53:1-2.
[8] LI S F, SHEN Y M, LIU D B, et al. Concentrating orange juice through CO2 clathrate hydrate technology [J]. Chemical Engineering Research & Design, 2015, 93:773-778.
[9] JOVIC S, KEURENTJES J T F, SCHOUTEN J C, et al. A new hydrate based process for drying liquids [J]. Chemical Engineering Research and Design, 2016, 115:423-432.
[10] LI S, QI F, DU K, et al. An energy-efficient juice concentration technology by ethylene hydrate formation [J]. Separation and Purification Technology, 2017, 173:80-85.
[11] KIM H W, MILLER D K, YAN F, et al. Probiotic supplementation and fast freezing to improve quality attributes and oxidation stability of frozen chicken breast muscle [J]. Lwt-Food Science and Technology, 2017, 75:34-41.
[12] KIM Y H B, MEYERS B, KIM H W, et al. Effects of stepwise dry/wet-aging and freezing on meat quality of beef loins [J]. Meat Science, 2017, 123:57-63.
[13] KETATA M, DESJARDINS Y, RATTI C. Effect of liquid nitrogen pretreatments on osmotic dehydration of blueberries [J]. Journal of Food Engineering, 2013, 116(1):202-212.
[14] GHIDELLI C, PEREZ-GAGO M B. Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables [J]. Critical Reviews in Food Science and Nutrition, 2018, 58(4):662-679.
[15] GHIDELLI C, P REZ-GAGO M B. Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables [J]. Critical Reviews in Food Science and Nutrition, 2018, 58(4):662-679.
[16] WANG C, WANG H, LI X, et al. Effects of oxygen concentration in modified atmosphere packaging on water holding capacity of pork steaks [J]. Meat Science, 2019, 148:189-197.
[17] KUULIALA L, AL HAGE Y, IOANNIDIS A G, et al. Microbiological, chemical and sensory spoilage analysis of raw Atlantic cod (Gadus morhua) stored under modified atmospheres [J]. Food Microbiology, 2018, 70:232-244.
[18] 廖李, 张莉会, 胡杨, 等. 不同包装结合硅藻土附载丁香酚缓释对草莓贮藏品质的影响 [J]. 食品科学, 2019,40(19):263-271.
[19] HUANG M, WANG J, ZHUANG H, et al. Effect of in-package high voltage dielectric barrier discharge on microbiological, color and oxidation properties of pork in modified atmosphere packaging during storage [J]. Meat Science, 2019, 149:107-113.
[20] SERGIO L, CANTORE V, SPREMULLI L, et al. Effect of cooking and packaging conditions on quality of semi-dried green asparagus during cold storage [J]. LWT - Food Science and Technology, 2018, 89:712-718.
[21] BAI Y P, GUO X N, ZHU K X, et al. Shelf-life extension of semi-dried buckwheat noodles by the combination of aqueous ozone treatment and modified atmosphere packaging [J]. Food Chemistry, 2017, 237:553-560.
[22] SERGIO L, GATTO M A, SPREMULLI L, et al. Packaging and storage conditions to extend the shelf life of semi-dried artichoke hearts [J]. LWT - Food Science and Technology, 2016, 72:277-284.
[23] ZHANG M, MENG X, BHANDARI B, et al. Recent developments in film and gas research in modified atmosphere packaging of fresh foods [J]. Critical Reviews in Food Science and Nutrition, 2016, 56(13):2 174-2 182.
[24] 章建浩, 黄明明, 王佳媚, 等. 低温等离子体冷杀菌关键技术装备研究进展 [J]. 食品科学技术学报, 2018, 36(4):8-16.
[25] 黄明明, 乔维维, 章建浩, 等. 低温等离子体冷杀菌对生鲜牛肉主要腐败菌及生物胺抑制效应研究 [J]. 食品科学技术学报, 2018, 36(4):17-23.
[26] MEHTA D, SHARMA N, BANSAL V, et al. Impact of ultrasonication, ultraviolet and atmospheric cold plasma processing on quality parameters of tomato-based beverage in comparison with thermal processing [J]. Innovative Food Science & Emerging Technologies, 2019, 52:343-349.
[27] COUTINHO N M, SILVEIRA M R, ROCHA R S, et al. Cold plasma processing of milk and dairy products [J]. Trends in Food Science & Technology, 2018, 74:56-68.
[28] MISRA N N, YEPEZ X, XU L, et al. In-package cold plasma technologies [J]. Journal of Food Engineering, 2019, 244:21-31.
[29] PAN Y, CHENG J H, SUN D W. Cold plasma-mediated treatments for shelf life extension of fresh produce: A review of recent research developments [J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(5):1 312-1 326.
[30] MA R, YU S, TIAN Y, et al. Effect of non-thermal plasma-activated water on fruit decay and quality in postharvest Chinese bayberries [J]. Food and Bioprocess Technology, 2016, 9(11):1 825-1 834.
[31] BANURA S, THIRUMDAS R, KAUR A, et al. Modification of starch using low pressure radio frequency air plasma [J]. LWT, 2018, 89:719-724.
[32] BAHRAMI N, BAYLISS D, CHOPE G, et al. Cold plasma: A new technology to modify wheat flour functionality [J]. Food Chem, 2016, 202:247-253.
[33] YONG H I, HAN M, KIM H J, et al. Mechanism underlying green discolouration of myoglobin induced by atmospheric pressure plasma [J]. Sci Rep, 2018, 8(1):9 790.
[34] HAN Y, CHENG J H, SUN D W. Activities and conformation changes of food enzymes induced by cold plasma: A review [J]. Crit Rev Food Sci Nutr, 2019, 59(5):794-811.
[35] 杨西萍, 刘煌, 李赟. 水合物法分离混合物技术研究进展 [J]. 化工学报, 2017, 68(3):831-840.
[36] 刘军, 梁德青. 二氧化碳-氮气混合气体在微粉硅胶中生成水合物的实验研究 [J]. 新能源进展, 2019, 7(4):309-317.
[37] CLA EN T, SEIDL P, LOEKMAN S, et al. Review on the food technological potentials of gas hydrate technology [J]. Current Opinion in Food Science, 2019, 29:48-55.
[38] PETERS T B, SMITH J L, BRISSON J G. Transfer process limited models for CO2 perception in CO2 hydrate desserts [J]. Journal of Food Engineering, 2013, 115(3):285-291.
[39] YIN Z, KHURANA M, TAN H K, et al. A review of gas hydrate growth kinetic models [J]. Chemical Engineering Journal, 2018, 342:9-29.
[40] LI S L, SUN Y H, SU K, et al. Numerical simulation of CH4 hydrate formation in fractures [J]. Energy Exploration & Exploitation, 2018, 36(5):1 279-1 294.
[41] SOSSO G C, CHEN J, COX S J, et al. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations [J]. Chemical Reviews, 2016, 116(12):7 078-7 116.
[42] FU X, CUETO-FELGUEROSO L, JUANES R. Nonequilibrium thermodynamics of hydrate growth on a gas-liquid interface [J]. Phys Rev Lett, 2018, 120(14):144 501.
[43] MEI Y, JIANG H Y, LIN Y, et al. Design of refrigerating and quick freezing equipment based on liquid nitrogen technology [J]. IOP Conference Series: Earth and Environmental Science, 2018, 199:032021.
[44] LIU X, XUE R, RUAN Y, et al. Flow characteristics of liquid nitrogen through solid-cone pressure swirl nozzles [J]. Applied Thermal Engineering, 2017, 110:290-297.
[45] NAWAZ W, OLEWSKI T, V CHOT L. Assessment and validation of evaporation models for cryogenic liquids [J]. Process Safety and Environmental Protection, 2019, 121:50-61.
[46] TOSHIAKI W H M, SHIGERU I. Explosive evaporating phenomena of cryogenic fluids by direct contacting normal temperature fluids [J]. The International Journal of Multiphysics, 2012, 6(2):107-114.
[47] KIM H W, MILLER D K, YAN F, et al. Probiotic supplementation and fast freezing to improve quality attributes and oxidation stability of frozen chicken breast muscle [J]. Lwt-Food Science and Technology, 2017, 75:34-41.
[48] 鲁珺, 余海霞, 杨水兵, 等. 液氮深冷速冻对三疣梭子蟹品质和微观组织结构的影响 [J]. 中国食品学报, 2016, 17(9):87-94.
[49] 黄忠民, 齐国强, 艾志录, 等. 液氮冷媒介质对速冻饺子冻裂率的影响 [J]. 农业工程学报, 2015, 31(14):278-283.
[50] ZIELINSKA M, ROPELEWSKA E, ZAPOTOCZNY P. Effects of freezing and hot air drying on the physical, morphological and thermal properties of cranberries (Vaccinium macrocarpon) [J]. Food and Bioproducts Processing, 2018, 110:40-49.
[51] NADULSKI R, SKWARCZ J, SUJAK A, et al. Effect of pre-treatment on pressing efficiency and properties of rhubarb (Rheum rhaponticum L.) juice [J]. Journal of Food Engineering, 2015, 166:370-376.
文章导航

/