生产与科研应用

药(食)真菌发酵豆渣的主要功能物质及生物活性变化

  • 吴永祥 ,
  • 吴丽萍 ,
  • 朴银美 ,
  • 金泰完
展开
  • 1(黄山学院 生命与环境科学学院,安徽 黄山,245041)
    2(安东国立大学 食品科学与生物技术学院,庆尚北道 安东,760749
博士,副教授(金泰完教授为通讯作者,E-mail:tk_37@naver.com)

收稿日期: 2020-03-24

  修回日期: 2020-05-09

  网络出版日期: 2020-08-15

Changes in main functional substances and biological activities of okara fermented with medicinal and edible fungi

  • WU Yongxiang ,
  • WU Liping ,
  • PARK Eunmi ,
  • KIM Taewan
Expand
  • 1(College of Life and Environment Science,Huangshan University,Huangshan 245041,China)
    2(Department of Food Science and Biotechnology,Andong National University,Andong 760749,Korea)

Received date: 2020-03-24

  Revised date: 2020-05-09

  Online published: 2020-08-15

摘要

采用云芝、灵芝和杏鲍菇3种药(食)真菌对豆渣进行固体发酵,研究发酵后豆渣主要活性物质含量、体外抗氧化和α-葡萄糖苷酶抑制活性的变化。结果表明,云芝、灵芝和杏鲍菇均能固体发酵豆渣,菌质生长直径随发酵时间呈显著增长。云芝、灵芝和杏鲍菇固体发酵后,豆渣的淀粉酶活力、蛋白酶活力和纤维素酶活力较发酵前均显著性增加(P<0.05)。相比于未发酵组,发酵后豆渣的不溶性膳食纤维、总膳食纤维的含量明显减少,而可溶性膳食纤维、蛋白质、游离氨基酸、总糖、还原糖、总酚等活性物质的含量均显著性增加(P<0.05)。3种真菌固体发酵后豆渣醇提物清除DPPH自由基、ABTS阳离子自由基能力及亚铁离子螯合能力均优于未发酵组(P<0.05)。发酵后豆渣对α-葡萄糖苷酶活性的抑制效果显著增加(P<0.05),且具有量效关系。当质量浓度为15 mg/mL时,未发酵豆渣醇提物对α-葡萄糖苷酶的抑制率为35.76%,而经云芝、灵芝和杏鲍菇固体发酵后的抑制率分别为62.25%、77.45%、47.91%。相关性分析表明,发酵前后豆渣醇提物总酚物质含量与其抗氧化能力有较好的相关性,是其主要抗氧化物质。该研究为豆渣的品质改良及综合利用提供了新途径。

本文引用格式

吴永祥 , 吴丽萍 , 朴银美 , 金泰完 . 药(食)真菌发酵豆渣的主要功能物质及生物活性变化[J]. 食品与发酵工业, 2020 , 46(15) : 100 -106 . DOI: 10.13995/j.cnki.11-1802/ts.024045

Abstract

Okara (soybean processing residue) was solid-state fermented by three medicinal and edible fungi,Coriolus vericolor,Ganoderma lucidum,and Pleurotus eryngii and its main active substances contents,antioxidant and α-glucosidase inhibitory activities in vitro were analyzed. The results showed that the three fungi were able to ferment okara,and the growth diameters of fungal substance were increased during fermentation. The amylase activity,protease activity and cellulase activity of fermented okara were increased than that of the non-fermented okara (P<0.05). The insoluble dietary fiber and total dietary fiber contents were significantly decreased,while the contents of soluble dietary fiber,protein,free amino acid,total sugar,reducing sugar and total phenolic were higher than that of the non-fermented (P<0.05). The ethanol extracts of the fermented okara possessed stronger DPPH,ABTS free radical scavenging and ferrous ions chelating activities than that of non-fermented okara (P<0.05). The α-glucosidase inhibitory activities were increased in a dose-dependent manner (P<0.05). The non-fermented okara ethanol extract showed the α-glucosidase inhibition rate of 35.76%, while that of the fermented against C. vericolor,G. lucidum and P. eryngii exhibited higher inhibition rate of 62.25%,77.45% and 47.91%,respectively,at a concentration of 15 mg/mL. Correlation analysis showed that the total phenolic contents were positively correlated with the antioxidant capacities,which were the main antioxidant substances. The research can provide a new method for the quality improvement and comprehensive utilization of okara.

参考文献

[1] 赵哲,杨润强,顾振新. 食用菌液态发酵产酶特性及其对豆渣中膳食纤维含量的影响[J]. 食品与发酵工业,2016,42(2): 108-113.
[2] VONG W C,LIU S Q.Changes in volatile profile of soybean residue (okara) upon solid-state fermentation by yeasts[J]. Journal of the Science of Food and Agriculture,2017,97(1): 135-143.
[3] 王静,刘宇,马银花,等. 菌藻混合发酵对豆渣中 B 族维生素含量和风味成分的影响[J]. 现代食品科技,2018,34(1): 75-82.
[4] 潘进权,伍惠敏,陈雨钿. 毛霉发酵法制备豆渣可溶性膳食纤维的研究[J]. 食品科学,2012,33(15): 210-215.
[5] VONG W C,AU YANG K L C,LIU S Q. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica[J]. International Journal of Food Microbiology,2016,235: 1-9.
[6] 管瑛,汪瑨芃,李文,等. 豆渣固态发酵过程中主要营养成分及抗氧化特性变化[J]. 食品科学,2016,37(21): 189-194.
[7] 李艳芳,郝建雄,程永强,等. 黑曲霉和米曲霉发酵改善豆渣口感[J]. 农业工程学报,2012,28(7): 248-253.
[8] 王慧,刘莹,胡博涵,等. 豆渣不同菌种发酵后成分变化的研究[J]. 现代食品科技,2013,29(6): 1 277-1 280.
[9] VONG W C,HUA X Y,LIU S Q.Solid-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavour properties of okara[J]. LWT-Food Science and Technology,2018,90: 316-322.
[10] 朱运平,李秀婷,刘瑞山,等. 不同菌种发酵豆渣的营养及抗氧化特性研究[J]. 中国食品学报,2014,14(9): 20-27.
[11] LI S,GAO A,DONG S,et al.Purification,antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta[J]. International Journal of Biological Macromolecules,2017,96: 26-34.
[12] 阮鸣. 不同药(食)用真菌固体发酵对黄芪中黄芪甲苷的影响[J]. 中草药,2011,42(7): 1 421-1 424.
[13] 吴永祥,吴丽萍,胡晓倩,等. 不同真菌固体发酵对蕨菜主要活性成分及其体外抗氧化和抗炎症作用的影响[J]. 食品科学,2018,39(24): 168-174.
[14] 张平,李晔,陈婵,等. 灵芝菌株固体发酵对枇杷叶主要活性成分的影响[J]. 天然产物研究与开发,2016,28(2): 242-246;209.
[15] 唐仕荣,陈尚龙,苗敬芝,等. 发酵大蒜加工过程中功能物质与抗氧化活性的变化研究[J]. 中国调味品,2018,43(10): 17-21.
[16] LI S,CHEN Y,LI K,et al.Characterization of physicochemical properties of fermented soybean curd residue by Morchella esculenta[J]. International Biodeterioration & Biodegradation,2016,109: 113-118.
[17] LI S,SANG Y,ZHU D,et al.Optimization of fermentation conditions for crude polysaccharides by Morchella esculenta using soybean curd residue[J]. Industrial Crops and Products,2013,50(C): 666-672.
[18] 吴永祥,毕淑峰,姜薇,等. 桑白皮多酚对B16细胞内黑色素生成的影响及其机制[J]. 中国药理学通报,2018,34(9):1 296-1 301.
[19] LIU Z,LI G,LONG C,et al.The antioxidant activity and genotoxicity of isogarcinol[J]. Food Chemistry,2018,253: 5-12.
[20] 吴永祥,王雅群,戴毅,等. 祁白术多酚酶法提取工艺优化及其抗氧化、抑制黑色素合成活性[J]. 核农学报,2019,33(6):1 146-1 155.
[21] ESFANDI R,WILLMORE W G,TSOPMO A.Peptidomic analysis of hydrolyzed oat bran proteins,and their in vitro antioxidant and metal chelating properties[J]. Food Chemistry,2019,279: 49-57.
[22] WU Y X,KIM Y J,LI S,et al.Anti-obese effects of mulberry (Morus alba L.) root bark through the inhibition of digestive enzymes and 3T3-L1 adipocyte differentiation[J]. The Korean Society of Food Preservation,2015,22(1): 27-35.
[23] SANJUKTA S,RAI A K.Production of bioactive peptides during soybean fermentation and their potential health benefits[J]. Trends in Food Science & Technology,2016,50: 1-10.
[24] 李艳宾,张琴,贺江舟,等. 云芝发酵处理对甘草渣中总黄酮提取的影响[J]. 食品科学,2010,31(11): 182-186.
[25] VONG W C,LIU S Q.Biovalorisation of okara (soybean residue) for food and nutrition[J]. Trends in Food Science & Technology,2016,52: 139-147.
[26] VONG W C,LIM X Y,LIU S Q.Biotransformation with cellulase,hemicellulase and Yarrowia lipolytica boosts health benefits of okara[J]. Applied Microbiology and Biotechnology,2017,101(19): 7 129-7 140.
[27] ORTS A,TEJADA M,PARRADO J,et al.Production of biostimulants from okara through enzymatic hydrolysis and fermentation with Bacillus licheniformis: comparative effect on soil biological properties[J]. Environmental Technology,2019,40(16): 2 073-2 084.
[28] 申春莉,李曼,沙见宇,等. 灵芝菌丝体固态发酵豆渣的营养成分变化研究[J]. 食品与发酵工业,2019,45(12): 114-119.
[29] QUEIROZ SANTOS V A,NASCIMENTO C G,SCHIMIDT C A P,et al. Solid-state fermentation of soybean okara: Isoflavones biotransformation,antioxidant activity and enhancement of nutritional quality[J]. LWT-Food Science and Technology,2018,92: 509-515.
[30] GUPTA S,LEE J J L,CHEN W N. Analysis of improved nutritional composition of potential functional food (okara) after probiotic solid-state fermentation[J]. Journal of Agricultural and Food Chemistry,2018,66(21): 5 373-5 381.
[31] 龙晓珊,胡腾根,邹宇晓,等. 发酵和加工对桑椹抗氧化和降血糖作用的影响[J]. 食品科学,2019,40(11): 116-123.
[32] 朱运平,程永强,刘海杰,等. 不同菌种发酵豆渣产α-葡萄糖苷酶抑制因子的研究[J]. 中国粮油学报,2008,23(4): 70-74.
文章导航

/