研究报告

芝麻降压与抗氧化肽QCKH的构效关系、分子拼接及理化性质研究

  • 芦鑫 ,
  • 贾聪 ,
  • 王瑞丹 ,
  • 高锦鸿 ,
  • 张丽霞 ,
  • 孙强 ,
  • 赵谋明 ,
  • 黄纪念
展开
  • 1(河南省农业科学院 农副产品加工研究中心,河南 郑州,450002);
    2(河南省农产品生物活性物质工程技术研究中心,河南 郑州,450002);
    3(华南理工大学 轻工与食品学院,广东 广州,510640)
第一作者:博士,助理研究员(黄纪念研究员为通讯作者, E-mail:hjinian@sina.com)

收稿日期: 2020-04-28

  修回日期: 2020-06-04

  网络出版日期: 2020-11-02

基金资助

中原科技领军人才项目(194200510014); 河南省科技攻关项目(202102110298); 国家特色油料产业技术体系(CARS-14)

Study on structure-activity relationship, molecular docking and physicochemical properties of an ACE-inhibitory and antioxidant sesame peptide QCKH

  • LU Xin ,
  • JIA Cong ,
  • WANG Ruidan ,
  • GAO Jinhong ,
  • ZHANG Lixia ,
  • SUN Qiang ,
  • ZHAO Mouming ,
  • HUANG Jinian
Expand
  • 1(Center of Agricultural and Sideline Products Processing of Henan Academy of Agricultural Sciences, Zhengzhou 450002, China);
    2(Henan Engineering Research Centre of Bioactive Substances in Agricultural Products, Zhengzhou 450002, China);
    3(College of Light Industry and Food Science Technology, South China University of Technology, Guangzhou 510640, China)

Received date: 2020-04-28

  Revised date: 2020-06-04

  Online published: 2020-11-02

摘要

为揭示芝麻7S蛋白源的降血压与抗氧化双活性肽QCKH的构效关系、与血管紧张素转换酶(angiotensin I-converting enzyme,ACE)作用机理、理化特性,采用比较分子相似性指数分析法(comparative molecular similarity indices analysis,CoMSIA)研究构效关系,利用分子拼接揭示QCKH与人体ACE的作用位点,并预测其体内吸收代谢特性,评价外部因素对其活性的影响。结果显示:QCKH的降压性与抗氧化性分别与His4和Cys2有关,氢键与电荷极性是影响活性的主要因素。QCKH通过与ACE的活性口袋S1(Ala354、Tyr523), S2(Gln281、His353、Lys511、His513、Tyr520),活性中心Zn2+及其四面体配位中His387和Glu411发生作用,影响ACE空间结构,引起抑制。ADMET预测QCKH可以经口吸收,不影响体内正常的代谢,安全性高。QCKH在酸性与中性条件下活性稳定,在60 ℃下也能保持稳定,然而对紫外敏感。研究结果为QCKH的结构修饰与应用研究提供了理论参考。

本文引用格式

芦鑫 , 贾聪 , 王瑞丹 , 高锦鸿 , 张丽霞 , 孙强 , 赵谋明 , 黄纪念 . 芝麻降压与抗氧化肽QCKH的构效关系、分子拼接及理化性质研究[J]. 食品与发酵工业, 2020 , 46(19) : 70 -77 . DOI: 10.13995/j.cnki.11-1802/ts.024327

Abstract

In order to reveal the structure-activity relationship, mechanism of interaction with Angiotensin-I converting enzyme (ACE), physicochemical properties of an ACE-inhibitory and antioxidant peptide QCKH derived from sesame 7S globulin, comparative molecular similarity indices analysis (CoMSIA) was employed to explore the structure-activity relationship of QCKH. Then molecular docking was performed to identify the interaction sites of ACE with QCKH. Furthermore, the absorption and metabolism of QCKH were predicted. Finally, the effects of environmental factors on activity of QCKH were evaluated. Results showed the ACE-inhibitory and antioxidation of QCKH were related to His4 and Cys2, respectively. Hydrogen bond and electrostatic flied were dominated factors for ACE-inhibitory and antioxidation. Moreover, QCKH formed bonds with S1 pocket (Ala354, Tyr523), S2 pocket (Gln281, His353, Lys511, His513, Tyr520), active site Zn2+, His387 and Glu411 in its tetrahedral coordination, which changed the spatial structure of ACE and caused inhibition. QCKH was recognized as oral absorption, no interference with normal metabolism in vivo and high safety by ADMET prediction. And the activity of QCKH was stable under acid and neutral conditions, and remained stable below 60 ℃. However, it was sensitive to UV. The above results support the theoretical references for structural modification and application of QCKH.

参考文献

[1] WANG Z, CHEN Z, ZHANG L, et al.Status of hypertension in China: Results from the China hypertension survey, 2012-2015[J]. Circulation, 2018, 137(22): 2 344-2 356.
[2] BHAT Z F, KUMAR S, BHAT H F.Antihypertensive peptides of animal origin: A review[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(3): 566-578.
[3] GU Y C, WU J P.LC-MS/MS coupled with QSAR modeling in characterising of angiotensin I-converting enzyme inhibitory peptides from soybean proteins[J]. Food Chemistry, 2013, 141(3): 2 682-2 690.
[4] COOPER W O, HERNANDEZ-DIAZ S, ARBOGAST P G, et al.Major congenital malformations after first-trimester exposure to ACE inhibitors[J]. The New England Journal of Medicine, 2006, 354(23): 2 443-2 451.
[5] 田明慧, 林亲录, 梁盈, 等. 植物源性食物中活性肽氨基酸组成的研究进展[J]. 食品与发酵工业,2014, 40(6): 110-116.
[6] TOUYZ R M, BRIONES A M.Reactive oxygen species and vascular biology: implications in human hypertension[J]. Hypertension Research, 2011, 34(1): 5-14.
[7] POPOLO A, AUTORE G, PINTO A, et al.Oxidative stress in patients with cardiovascular disease and chronic renal failure[J]. Free Radical Research, 2013, 47(5): 346-356.
[8] CHEN K, XIE F, LIU S, et al.Plasma reactive carbonyl species: Potential risk factor for hypertension[J]. Free Radical Research, 2011, 45(5): 568-574.
[9] GARCIA-MORA P, PEÑAS E, FRIAS J, et al. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins[J]. Food Chemistry, 2015, 171: 224-232.
[10] TANZADEHPANAH H, ASOODEH A, SAIDIJAM M, et al.Improving efficiency of an angiotensin converting enzyme inhibitory peptide as multifunctional peptides[J]. Journal of Biomolecular Structure and Dynamics, 2017, 36(14): 3 803-3 818.
[11] LU X, ZHANG L X, SUN Q, et al.Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate[J]. Food Research International, 2019, 116: 707-716.
[12] NAKANO D, OGURA K, MIYAKOSHI M, et al.Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats[J]. Bioscience Biotechnology and Biochemistry, 2006, 70(5): 1 118-1 126.
[13] 袁东振, 张国治, 黄纪念, 等. 用亚临界芝麻粕制备芝麻蛋白的工艺研究[J]. 河南工业大学学报(自然科学版), 2014, 35(6): 49-55.
[14] 周存山, 秦晓佩, 余筱洁, 等. 绿鳍马面鲀鱼皮蛋白抗氧化肽模拟胃肠消化制备[J]. 农业机械学报, 2015, 46(8): 211-216.
[15] VUKIC V R, VUKIC D V, MILANOVIC S D, et al.In silico identification of milk antihypertensive di-and tripeptides involved in angiotensin I-converting enzyme inhibitory activity[J]. Nutrition Research, 2017, 46: 22-30.
[16] SEKO T, IMAMURA S, ISHIHARA K.et al.Inhibition of angiotensin-converting enzyme by selenoneine[J]. Fisheries Science, 2019, 85: 731-736.
[17] 杨欣, 李亚辉, 钱海兵, 等. 基于网络药理学筛选结肠癌关键靶点及人参干预研究[J]. 贵阳中医学院学报, 2019, 41(6):24-30.
[18] LAFARGA T, WILM M, WYNNE K, et al.Bioactive hydrolysates from bovine blood globulins: Generation, characterisation, and in silico prediction of toxicity and allergenicity[J]. Journal of Functional Foods, 2016, 24: 142-155.
[19] 李致瑜, 张翀, 田玉庭, 等. 大黄鱼内脏抗氧化肽的稳定性研究[J]. 现代食品科技, 2016, 32(1): 151-158.
[20] LI F J, YIN L J, LU X, et al.Changes in angiotensin I-converting enzyme inhibitory activities during the ripening of Douchi (a Chinese traditional soybean product) fermented by various starter cultures[J]. International Journal of Food Properties, 2010, 13(3): 512-524.
[21] UDENIGWE C C, ALUKO R E.Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates[J]. International Journal of Molecular Sciences, 2011, 12: 3 148-3 161.
[22] TIAN M, FANG B, JIANG L, et al.Structure-activity relationship of a series of antioxidant tripeptides derived from β-lactoglobulin using QSAR modeling[J]. Dairy Science and Technology, 2015, 95: 451-463
[23] GÓMEZ-RUIZ J A, TABORDA G, AMIGO L, et al. Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry[J]. European Food Research and Technology, 2006, 223: 595-601.
[24] TERASHIMA M, BABA T, IKEMOTO N, et al.Novel angiotensin-converting enzyme (ACE) inhibitory peptides derived from boneless chicken leg meat[J]. Journal of Agricultural and Food Chemistry, 2010, 58: 7 432-7 436.
[25] SAITO T, NAKAMURA T, KITAZAWA H, et al.Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese[J]. Journal of Dairy Science, 2000, 83: 1 434-1 440.
[26] VILLEGAS J M, PICARIELLO G, MAMONE G, et al.Milk-derived angiotensin-I-converting enzyme-inhibitory peptides generated by Lactobacillus delbrueckii subsp. lactis CRL 581[J]. Peptidomics, 2014, 1: 22-29.
[27] 管骁, 刘静, 苏淅娜, 等. 血管紧张素转化酶抑制二肽抑制ACE作用的柔性分子拼接[J]. 食品科学, 2015, 36(5): 1-6.
[28] 张晖, 唐文婷, 王立, 等. 抗氧化肽的构效关系研究进展[J]. 食品与生物技术学报, 2013, 32(7): 673-679.
[29] ALUKO R E.Structure and function of plant protein-derived antihypertensive peptides[J]. Current Opinion in Food Science, 2015, 4: 44-50.
[30] LIU C L, FANG L, MIN W H, et al.Exploration of the molecular interactions between angiotensin-I-converting enzyme (ACE) and the inhibitory peptides derived from hazelnut (Corylus heterophylla Fisch.)[J]. Food Chemistry, 2018, 245: 471-480.
[31] WU J P, ALUKO R, NAKAI S.Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure activity relationship modeling of peptides containing 4-10 amino acid residues[J]. QSAR & Combinatorial Science, 2006, 25(10): 873-880.
[32] UDENIGWE C C, LI H, ALUKO R E.Quantitative structure-activity relationship modeling of renin-inhibiting dipeptides[J]. Amino Acids, 2012, 42(4): 1 379-1 386.
[33] PINA A S, ROQUE A C A. Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme[J]. Journal of Molecular Recognition, 2009, 22(2): 162-168.
[34] 朱义福. 还原型谷胱甘肽的稳定性研究[J]. 现代食品科技, 2011, 27(8): 919-923.
[35] 胡晓, 吴静, 杨贤庆, 等. 添加物和体外模拟胃肠道消化对鸢乌贼抗氧化肽稳定性的影响[J]. 食品与发酵工业, 2016, 42(11): 91-96.
[36] 王辉, 冯万祥. 含汞树脂分离提纯谷胱甘肽[J]. 华东理工大学学报, 1996, 22(6): 717-721.
[37] CHONDROGIANNI N, PETROPOULOS I, GRIMM S, et al.Protein damage, repair and proteolysis[J]. Molecular Aspects of Medicine, 2014, 35:1-71.
文章导航

/