为提升牡蛎的品质安全,采用质量分数为1%的NaCl盐水注射结合冰温脱水[(-2.0 ℃,200~300 Pa,含水率(60±1)%]作为前处理,以冷藏(4.0±0.5) ℃作为实验对照,对牡蛎进行冰温(-2.0±0.5) ℃贮藏。通过测定感官、菌落总数、挥发性盐基氮、TCA-可溶性肽和硫代巴比妥酸值,微观组织结构变化,结合低场核磁共振(low field nuclear magnetic res-onance,LF-NMR)和核磁成像(magnetic resonance imaging,MRI)指标评价牡蛎贮藏过程中水分迁移及品质变化。结果表明,低盐冰温脱水牡蛎冷藏条件下可贮藏12 d,冰温条件可贮藏24 d。冰温贮藏能有效减少水分流失,保持微观组织结构完整,提升贮藏品质。Pearson 相关性分析表明,横向弛豫时间T22与低盐冰温脱水牡蛎的品质变化显著相关(P<0.05)。实验表明,低盐冰温脱水牡蛎贮藏性良好,冰温能有效延长其贮藏期,为牡蛎高品质流通提供理论依据。
In this experiment, 1% (mass fraction) NaCl brine injection combined with controlled freezing-point dehydration, [-2.0 ℃,200-300 Pa,water content (60±1)%], was used for the pretreatment of oyster. Cold storage (4.0±0.5) ℃ and ice temperature storage (-2.0 ±0.5) ℃ were carried out respectively. Water migration and quality changes of oyster during storage were evaluated by sensory, total bacterial count, total volatile basic nitrogen (TVB-N), TCA-soluble peptide, thiobarbituric acid (TBA) value, microstructure of oyster, low field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI). The results showed that oysters could be stored for 12 days under cold storage and 24 days under ice temperature storage. Ice temperature storage could effectively reduce water loss, maintain the integrity of microstructure and improve storage quality. Pearson correlation analysis showed that the transverse relaxation time T22 was significantly related to the quality change of the low salt-controlled freezing-point dehydration oyster. Therefore, the storage time could be prolonged by the treatment of brine injection and controlled freezing-point dehydration. This result provides a theoretical basis for high-quality circulation of oyster.
[1] WHEATON F.Review of the properties of eastern oysters, crassostrea virginica: Part I. physical properties[J]. Aquacultural Engineering, 2007, 37(1):3-13.
[2] AARAAS R, HERNAR I J, VORRE A, et al.Sensory, histological, and bacteriological changes in flat oysters, ostrea edulis L.during different storage conditions[J]. Journal of Food Science, 2004, 69(6):S205-S210.
[3] 郭晓伟,董士远,刘尊英,等.冰温牡蛎的货架期[J].食品科技,2010,35(11):86-90.
[4] CAO R, ZHAO L, SUN H, et al.Characterization of microbial community in high-pressure treated oysters by high-throughput sequencing technology[J]. Innovative Food Science & Emerging Technologies,2018,45:241-248.
[5] 李龙飞. 牡蛎肉低温贮藏关键技术研究[D].湛江:广东海洋大学,2014:4-6.
[6] 王雪锋. 低盐高水分草鱼的风味品质变化研究[D].杭州:浙江工商大学,2015:1-3.
[7] SONGSAENG S, SOPHANODORA P, KAEWSRITHONG J, et al.Quality changes in oyster (Crassostrea belcheri) during frozen storage as affected by freezing and antioxidant[J]. Food Chemistry, 2010, 123(2):286-290.
[8] HE H, ADAMS R M, FARKAS D F, et al.Use of high-pressure processing for oyster shucking and shelf-life extension[J]. Journal of Food Science, 2002, 67(2):640-645.
[9] CHEN H B, WANG M Y, YANG C F, et al, Bacterial spoilage profiles in the gills of Pacific oysters (Crassostrea gigas) and Eastern oysters (C. virginica) during refrigerated storage[J]. Food Microbiology, 2019,82:209-217.
[10] CHEN H B, WANG M Y, LIN X, et al.Bacterial microbiota profile in gills of modified atmosphere-packaged oysters stored at 4 ℃[J]. Food Microbiology, 2016, 61:58-65.
[11] 农业部. 食品中挥发性盐基氮的测定: GB 5009.228—2016[S].北京:中国标准出版社, 2017.
[12] 农业部. 食品中丙二醛的测定:GB5009.181—2016[S].北京:中国标准出版社, 2017.
[13] KUMAR H, LOC T N, MUKUND K, et al, Effects of pressure-assisted enzymatic hydrolysis on functional and bioactive properties of tilapia (Oreochromis niloticus) by-product protein hydrolysates[J]. Food Science & Technology ,2020,122: 43-51.
[14] LOWRY O H,ROSEBROUGH N J, FARR A L, et al. Protein measurement with the Folin phenol reagent[J]. Journal of Biological Chemistry, 1951(1), 193: 265-275.
[15] 李海涛. 牡蛎新鲜度快速无损检测技术的研究[D].大连:大连工业大学,2017:28-29.
[16] 王硕,谢晶,杨凯,等.三文鱼冷链流通过程中质构、鲜度及感官品质变化规律与水分迁移相关性[J].中国食品学报,2018,18(5):173-184.
[17] 余文晖,王金锋,谢晶.不同质量分数NaCl和CaCl2盐溶液解冻对金枪鱼品质的影响[J].食品科学,2019,40(17):240-246.
[18] 曹荣,薛长湖,刘淇,等.一种复合型生物保鲜剂在牡蛎保鲜中的应用研究[J].食品科学,2008, 29(11):653-655.
[19] DUUN A S, HEMMINGSEN A K T, HAUGLAND A, et al. Quality changes during superchilled storage of pork roast[J]. Food Science & Technology, 2008, 41(10):2 136-2 143.
[20] LUOQI M, WILLIAM C, WALTON, et al,Characterization of polylactic acids-polyhydroxybutyrate based packaging film with fennel oil, and its application on oysters[J]. Food Packaging and Shelf Life,2019,22:43-52.
[21] SHAHIDI F,ZHONG Y.Lipid oxidation and improving the oxidative stability[J].Chemical Society Reviews,2010,39(11):4 067-4 079.
[22] WANG X Y, XIE J.Evaluation of water dynamics and protein changes in bigeye tuna (Thunnus obesus) during cold storage[J]. LWT-Food Science & Technology,2019, 108:289-296.
[23] JIA S L, LI Y, ZHUANG S, et al.Biochemical changes induced by dominant bacteria in chill-stored silver carp (Hypophthalmichthys molitrix) and GC-IMS identification of volatile organic compounds[J]. Food Microbiology,2019,84: 24-32.
[24] 李海涛. 牡蛎新鲜度快速无损检测技术的研究[D].大连:大连工业大学,2017,32-37.
[25] 李娜,李瑜.利用低场核磁共振技术分析冬瓜真空干燥过程中的内部水分变化[J].食品科学,2016,37(23):84-88.
[26] STRAADT I K, RASMUSSEN M, ANDERSEN H J, et al.Aging-induced changes in microstructure and water distribution in fresh and cooked pork in relation to water-holding capacity and cooking loss: A combined confocal laser scanning microscopy (CLSM) and low-field nuclear magnetic resonance relaxation study[J]. Meat Science, 2007,75(4): 687-695.
[27] 陈依萍,崔文萱,高瑞昌,等.冷藏与微冻贮藏过程中鲟鱼肉品质变化[J].渔业科学进展,2019,41(1):1-7.