为客观、准确地评价不同核桃内种皮的口感品质,利用α-ASTREE电子舌系统对5个核桃品种的内种皮水浸提液进行测定,并进行主成分、聚类和相似性分析,以及测定了核桃内种皮的单宁和黄酮含量,将理化指标与电子舌响应值进行相关性分析。结果表明,聚类分析中,当类平均距离为0.4时,5个核桃品种可聚为3大类,‘农核1号'和‘ND-1'各为一类,其他3个核桃品种为一类;相似性分析中‘农核1号'与其他4个核桃品种之间的距离>480、指纹分辨指数>70%,其中‘农核1号'与‘ND-1'之间的距离为635.71、指纹分辨指数为97.99%,其他3个核桃品种之间的距离<260、指纹分辨指数<60%;在单宁和黄酮含量方面,‘ND-1'最高、‘农核1号'最低、其他3个核桃品种居中;单宁、黄酮含量与苦味相关的SCS传感器呈正相关,与甜味相关的ANS传感器呈显著负相关(P<0.05)。因此,利用电子舌将5个核桃品种分为3大类,为后续的核桃口感品质调控研究以及核桃种质资源分类评价等方面提供了重要依据。
In order to objectively and accurately evaluate the taste quality of different walnut kernel pellicle, the α-ASTREE electronic tongue system was used to measure the water extracts of the pellicle of five walnut varieties. And the principal component analysis, cluster analysis and similarity analysis were also carried out. Besides, the content of tannin and flavonoids in walnut pellicle was measured, and the correlation between the physical and chemical indicators and the electronic tongue response value was analyzed. The results showed that the water extracts of the pellicle of the five walnut varieties were grouped into three categories when the average distance of the classes was 0.4. ‘Nonghe 1'and ‘ND-1' forming different cluster respectively, while the other three walnut varieties tend to form one cluster. Moreover, the distance between “Nonghe 1” and the other four walnut varieties was more than 480 in similarity analysis and the fingerprint resolution index was higher than 70%. Moreover, the distance between ‘Nonghe 1' and ‘ND-1' was 635.71, with the fingerprint resolution index of 97.99%. Meanwhile, the distance between the other three walnut varieties was less than 260, with the fingerprint resolution index less than 60%. Furthermore, tannin and flavonoid content were also different,‘ND- 1'was the highest and‘Nonghe 1' was the lowest. Besides, the content of tannins and flavonoids were positively correlated with a bitter taste, and significantly negatively correlated with sweet taste (P<0.05). Therefore, the electronic tongue could divide these five walnut varieties into three categories, which provided important evidence for the subsequent research on walnut taste quality control and the classification and evaluation of walnut germplasm.
[1] 郗荣庭,张毅萍.中国果树志·核桃卷[M].北京:中国林业出版社,1996.
[2] 郭慧清,张泽坤,白光灿,等.核桃内种皮多酚的研究进展及应用前景[J].农产品加工,2017(17):36-39.
[3] 周晔. 核桃内种皮多酚分析与抗氧化活性[D].北京:中国林业科学研究院,2013.
[4] 荣瑞芬,历重先,刘雪峥,等.核桃内种皮营养与功能成分初步分析研究[J].食品科学,2008,29(11):541-543.
[5] PERSIC M,MIKULIC-PETKOVSEK M,SLATNAR A,et al.Changes in phenolic profiles of red-colored pellicle walnut and hazelnut kernel during ripening[J].Food Chemistry,2018,252:349-355.
[6] HA D,SUN Q Y,SU K Q,et al.Recent achievements in electronic tongue and bioelectronic tongue as taste sensors[J].Sensors & Actuators:B. Chemical,2015,207:1 136-1 146.
[7] 姜莎,陈芹芹,胡雪芳,等.电子舌在红茶饮料区分辨识中的应用[J].农业工程学报,2009,25(11):345-349.
[8] 姚月凤,王家勤,滑金杰,等.电子舌在工夫红茶甜纯滋味特征评价中的应用[J].食品科学,2019,40(18):236-241.
[9] 唐平,许勇泉,汪芳,等.电子舌在茶饮料分类中的应用研究[J].食品研究与开发,2016,37(11):121-126;165.
[10] RUDNITSKAYA A,SCHMIDTKE L M,REIS A,et al.Measurements of the effects of wine maceration with oak chips using an electronic tongue[J].Food Chemistry,2017,229:20-27.
[11] 刘佳,黄淑霞,余俊红,等.基于电子舌技术的啤酒口感评价及其滋味信息与化学成分的相关性研究[J].食品与发酵工业,2019,45(2):196-201;206.
[12] FERREIRA E J,PEREIRA P C T,DELBEM A C B,et al.Random subspace method for analyzing coffee with electronic tongue[J].Electronics Letters,2007,43(21):1 138-1 140.
[13] 翟晓娜,杨剀舟,柴智,等.电子鼻电子舌在咖啡风味研究中的应用[J].食品工业科技,2016,37(5):365-370.
[14] 王梦馨,薄晓培,韩善捷,等.不同防冻措施茶园茶汤滋味差异的电子舌检测[J].农业工程学报,2016,32(16):300-306.
[15] 关为,田呈瑞,陈卫军,等.电子舌在绿茶饮料区分辨识中的应用[J].食品工业科技,2012,33(13):56-59.
[16] 张璟琳,黄明泉,孙宝国,等.电子舌技术在食醋口感评价中的应用[J].食品与发酵工业,2013,39(11):220-226.
[17] 田晓静,刘丽霞,王俊.电子舌技术在肉与肉制品检测中的应用[J].食品工业科技,2013,34(7):397-400.
[18] 范文教,易宇文,徐培,等.猪肉肠掺杂鸡肉的电子舌识别研究[J].食品科技,2017,42(11): 95-299.
[19] 王璐,黄明泉,孙宝国,等.电子舌技术在甜面酱口感评价中的应用[J].食品科学,2012,33(20):347-351.
[20] 李文欣,赵文婷,王宇滨,等.基于电子舌评价不同品种番茄制备番茄酱的滋味品质[J].食品工业科技,2019,40(19):209-215.
[21] SOBRINO-GREGORIO L,TANLEQUE-ALBERTO F,BATALLER R,et al.Using an automatic pulse voltammetric electronic tongue to verify the origin of honey from Spain, Honduras, and Mozambique[J].Journal of the Science of Food and Agriculture,2020,100(1):212-217.
[22] 王素霞,赵镭,史波林,等.基于差别度的电子舌对花椒麻味物质的定量预测[J].食品科学,2014,35(18):84-88.
[23] 张春梅,陈朝银,林玉萍,等.几种云南核桃内种皮黄酮及多酚含量的测定[J].云南中医学院学报,2013,36(2):10-13.
[24] 徐宏化,程慧,王正加,等.美国山核桃总多酚与总黄酮含量及抗氧化活性[J].核农学报,2016,30(1):72-78.
[25] 万政敏. 核桃青皮中多酚类物质及其抗氧化性的分析[D].呼和浩特:内蒙古农业大学,2007.
[26] 万政敏,郝艳宾,杨春梅,等.核桃仁种皮中的多酚类物质高压液相色谱分析[J].食品工业科技,2007,28(7):212-213;224.
[27] NOUR V,TRANDAFIR I,COSMULESCU S.HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves[J]. Journal of Chromatographic Science,2013,51(9):883-890.
[28] LI Y,LUO X,WU C,et al.Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in red and green walnut (Juglans regia L.)[J].Molecules (Basel, Switzerland),2017,23(1).
[29] 方贤胜,吴涛,肖良俊.基于广泛靶向代谢组学的浅黄色和紫色核桃内种皮成分差异分析[J/OL].食品科学,2020.DOI:10.7506/spkx1002-6630-20191108-0009.
[30] 罗玉洁. 基于高通量测序的中国甜柿microRNAs鉴定及分析[D].武汉:华中农业大学,2014.
[31] 解利利,张慜,孙金才.化学吸附法脱除蓝莓汁中单宁的研究[J].食品与生物技术学报,2010,29(6):847-853.
[32] 费学谦,周立红,龚榜初.不同甘、涩类型柿果实单宁组成的差异及罗田甜柿单宁的特性[J].林业科学研究,1999(4):369-373.
[33] 田恒禄. 黄瓜涩味形成与儿茶素类物质代谢的关系及相关分子基础的研究[D].扬州:扬州大学,2015.
[34] 刘敏. 茶主要涩味物质代谢相关基因的差异表达分析[D].扬州:扬州大学,2015.
[35] 乜兰春,孙建设.苹果果实酚类物质含量与果实苦涩关系的研究[J].园艺学报,2005(5):13-17.
[36] 夏勃.斑苦竹笋(Arundinaria oleosa)营养成分和化学成分分析[D].南京:南京林业大学,2006.
[37] 俞文君,金强,李根,等.基于果实苦涩味新疆核桃资源遗传多样性分析[J].食品工业科技,2020,41(13):234-240.