[1] SANJIVKUMAR M, SILAMBARASAN T, BALAGURUNATHAN R, et al.Biosynthesis, molecular modeling and statistical optimization of xylanase from a mangrove associated actinobacterium Streptomyces variabilis (MAB3) using Box-Behnken design with its bioconversion efficacy[J]. International Journal of Biological Macromolecules,2018, 118:195-208.
[2] SØRENSEN H.Enzymatic hydrolysis of xylan[J].Nature,1953, 172(4 372):305–306.
[3] LI Q, SUN B G, XIONG K, et al.Improving special hydrolysis characterization into Talaromyces thermophilus F1208 xylanase by engineering of N-terminal extension and site-directed mutagenesis in C-terminal[J].International Journal of Biological Macromolecules,2017,96:451-458.
[4] MONTANÉ D, NABARLATZ D, MARTORELL A, et al.Removal of lignin and associated impurities from xylo-oligosaccharides by activated carbon adsorption[J].Industrial and Engineering Chemistry Research,2006, 45(7):2 294-2 302.
[5] KHURANA S, KAPOOR M, GUPTA S, et al.Statistical optimization of alkaline xylanase production from Streptomyces violaceoruber under submerged fermentation using response surface methodology[J].Indian Journal of Microbiology,2007,47(2):144-152.
[6] 刘明启,孙建义,郭爽.木聚糖酶嗜酸性、热稳定性研究进展[J].中国饲料,2004(13):21-22;25.
LIU Q M, SUN J Y, GUO S.Advances in the study of eosinophilic and thermal stability of wood polysaccharides[J].China Feed, 2004(13):21-22;25.
[7] 曹钰,陆健,李胤.酸性木聚糖酶的研究进展[J].工业微生物,2005(4):41-44;50.
CAO Y, LU J, LI Y, et al.Research advances in acid-stable xylanase[J].Industrial Microbiology,2005(4):41-44;50.
[8] VIIKARI L, KANTELLINEN A, SUNDQUIST J, et al.Xylanases in bleaching:From an idea to the industry[J].FEMS Microbiol Rev,1994,13(2-3):335-350.
[9] PRADE R A.Xylanases:From biology to biotechnology[J].Biotechnol Genet Eng Rev, 1996, 13:101-131.
[10] 王雅珍,李秀婷,孙宝国,等.微生物酸性木聚糖酶及其应用的研究进展[J].食品与发酵工业,2012,38(8):107-113.
WANG Y Z, LI X T, SUN B G, et al.Study on microbial acidic xylanase and its application[J].Food and Fermentation Industries, 2012, 38(8):107-113.
[11] GALBE M, SASSNER P, WINGREN A, et al.Process engineering economics of bioethanol production[J].Advances in Biochemical Engineering/Biotechnology,2007,108:303-327.
[12] SRIKANTH R, SIDDARTHA G, REDDY C H S S S, et al.Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization[J].Carbohydrate Polymers,2015,123:8-16.
[13] LI Q, SUN B G, LI X, et al.Improvement of the catalytic characteristics of a salt-tolerant GH10 xylanase from Streptomyce rochei L10904[J].International Journal of Biological Macromolecules, 2018,107:1 447-1 455.
[14] BAILEY M J, BIELY P, POUTANEN K.Interlaboratory testing of methods for assay of xylanase activity[J].Journal of Biotechnology,1992,23(3):257-270.
[15] MILLER G L.Use of dinitrosalicylic acid reagent for determination of reducing sugar analytical chemistry[J] Analytical Chemistry 1959,31(3): 426-428.
[16] LI Y H, ZHANG B, CHEN X, et al.Improvement of Aspergillus sulphureus endo-β-1,4-xylanase expression in Pichia pastoris by Codon optimization and analysis of the enzymic characterization[J].Applied Biochemistry and Biotechnology, 2010,160(5):1 321-1 331.
[17] ZAPPE H, JONES D T, WOODS D R, et al.Cloning and expression of a xylanase gene from Clostridium acetobutylicum P262 in Escherichia coli[J].Applied Microbiology and Biotechnology, 1987,27(1):57-63.
[18] LIU T Y, ZHANG J G.High-level expression and characterization of Aspergillus niger ATCC 1015 xylanase B in Komagataella phaffii[J].Applied Biological Chemistry,2018, 61(4):373- 381.
[19] WONG K K, TAN L U, SADDLER J N.Multiplicity of beta-1,4-xylanase in microorganisms:Functions and applications[J].Microbiological Reviews, 1988, 52(3):305-317.
[20] CHEN Y H, LI L L, LONG L K, et al.High cell-density cultivation of phenolic acid decarboxylase-expressing Escherichia coli and 4-vinylguaiacol bioproduction from ferulic acid by whole-cell catalysis[J].Journal of Chemical Technology and Biotechnology,2018, 93:2 415-2 421.
[21] HU H F, LI L L, DING S J.An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives[J].Applied Microbiology and Biotechnology,2015, 99(12):5 071-5 081.
[22] LI Q, WU Q H, SUN B G, et al.Effect of disulfide bridge on hydrolytic characteristics of xylanase from Penicillium janthinellum[J].International Journal of Biological Macromolecules, 2018, 120: 405-413.
[23] LI Q, SUN B G, JIA H Y, et al.Engineering a xylanase from Streptomyce rochei L10904 by mutation to improve its catalytic characteristics[J].International Journal of Biological Macromolecules, 2017, 101:366-372.
[24] BAGEWADI Z K, MULLA S I, NINNEKAR H Z.Purification, characterization, gene cloning and expression of GH-10 xylanase (Penicillium citrinum isolate HZN13)[J].3 Biotech, 2016, 6(2):1-9.
[25] WEE M Y J, MURAD A M A, BAKAR F D A, et al.Expression of xylanase on Escherichia coli using a truncated ice nucleation protein of Erwinia ananas (InaA)[J].Process Biochemistry, 2019,78:25-32.
[26] KHALID A, TAYYAB M, HASHMI A S, et al.Optimization of conditions for maximal production of recombinant thermostable cellulase from Thermotoga naphthophila using E.coli BL21-codonPlus (DE3) as expression host[J].Pakistan journal of zoology, 2019, 51(4).
[27] SUBRAMANIYAN S, SANDHIA G S, PREMA P, et al.Control of xylanase production without protease activity in Bacillus sp. by selection of nitrogen source[J].Biotechnology Letters, 2001, 23(5):369-371.
[28] KR S.Cassava bagasse-low cost substrate for thermo-tolerant xylanase production using Bacillus subtilis[J].International Journal of Chem Tech Research, 2013, 5(1):394-400.
[29] GOLOTIN V A, BALABANOVA L A, NOSKOVA Y A, et al.Optimization of cold-adapted alpha-galactosidase expression in Escherichia coli.[J].Protein Expression and Purification,2016, 123:14-18.
[30] WANG H L, LI X M, MA Y H,et al.Process optimization of high-level extracellular production of alkaline pectate lyase in recombinant Escherichia coli BL21 (DE3)[J].Biochemical Engineering Journal,2015, 93:38-46.
[31] ZHANG H, SUN X, LI W J, et al.Expression and characterization of recombinant sucrose phosphorylase[J].Protein Journal,2018, 37(1): 93-100.
[32] CLAUSEN M, LAMB C J, MEGNET R, et al.PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccharomyces cerevisiae[J].Gene,1994, 142(1):107-112.
[33] MALIK A, ALSENAIDY A M, ELROBH M, et al.Optimization of expression and purfication of HSPA6 protein from Camelus dromedarius in E.coli.[J].Saudi Journal of Biological Sciences,2016,23(3):410-419.
[34] DIÁZ-RINCÓN D J, DUQUE I, OSORIO E, et al.Production of recombinant Trichoderma reesei cellobiohydrolase II in a new expression system based on Wickerhamomyces anomalus[J].Enzyme Research, 2017, 2017:6 980 565.
[35] DONOVAN R S, ROBINSON C W, CLICK B R.Review:Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter[J].Journal of Industrial Microbiology,1996, 16(3),145-154.
[36] LI Q Q, QI Y, CHEN J S, et al.Molecular characterization of an ice nucleation protein variant (InaQ) from Pseudomonas syringae and the analysis of its transmembrane transport activity in Escherichia coli[J].International Journal of Biological Sciences, 2012, 8(8):1 097-1 108.
[37] FAN L H, LIU N, YU M G, et al.Cell surface display of carbonic anhydrase on Escherichia coli using ice nucleation protein for CO2 sequestration[J].Biotechnology and Bioengineering,2011,108:2 853-2 864.
[38] LIU J G, XING J M, CHANG T S,et al.Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods[J].Process Biochemistry,2005, 40(8):2 757-2 762.
[39] ROUSHDY M M, DESOUKY S E, ESMAEL M E, et al.Optimization and characterization of tannin acyle hydrolase produced by Aspergillus flavus var.columnaris using solid state fermentation technique[J].In New York Science Journal,14,7(3):88-98.
[40] SANDHYA C, SUMANTHA A, SZAKACS G, et al.Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation[J].Process Biochemistry,2005, 40(8):2 689-2 694.