为提高发酵乳杆菌的增殖浓度,对其高密度发酵培养基成分及培养工艺进行优化以提高其活菌数。结果表明,酵母粉复合大分子肽的蛋白胨是发酵乳杆菌的最适氮源,缓冲盐在恒pH培养时对菌株生长无促进作用,Mn2+和Mg2+均是发酵乳杆菌的限制性微量元素。另外,中性条件下酸根的积累不会对发酵乳杆菌有特异性毒害作用,其生长主要是受到渗透压的抑制。以菌株生长速率被抑制时的碳氮消耗比作为培养基中的碳氮源比例,基于菌株生长速率被抑制时的渗透压确定碳氮源的添加量。进一步优化恒pH分批培养和恒pH自动反馈补糖培养工艺,得到各菌株的最优培养策略:发酵乳杆菌FXJCJ6-1、发酵乳杆菌FGDLZR161、发酵乳杆菌CCFM422分别在恒pH 6.0、5.5、5.5分批培养时,活菌数分别达到(1.3±0.1)×1010、(1.1±0.1)×1010、(9.5±0.5)×109CFU/mL,较在MRS培养基静置培养时的活菌数提高了3.1、3.8和4.6倍。该研究结果的应用将显著提高发酵乳杆菌的工业化生产效率。
In order to increase the proliferation concentration of Lactobacillus fermentum, the high-density fermentation medium composition and cultivation technology were optimized to increase the number of viable counts. The results showed that peptone of yeast powder composite macromolecular peptide was the most suitable nitrogen source for L. fermentum, and saline buffer had no effect on the growth of the strain during constant pH culture. Both Mn2+ and Mg2+ were the limiting trace elements of L. fermentum. In addition, the accumulation of acid anions under neutral conditions did not have specific toxic effects on L. fermentum, and the growth of L. fermentum was mainly inhibited by osmotic pressure. The carbon-nitrogen consumption ratio when the growth rate was inhibited was used as the ratio of the carbon and nitrogen source in the medium, and the concentration of the carbon and nitrogen source was determined based on the osmotic pressure when the growth rate of the strain was inhibited. The constant pH batch cultivation and constant pH automatic feedback sugar supplement cultivation process to obtain the optimal cultivation strategy for each strain were further optimized: L. fermentum FXJCJ6-1, L. fermentum FGDLZR161, L. fermentum CCFM422 at constant pH 6.0, 5.5, 5.5, respectively. In batch culture, the number of viable counts reached (1.3±0.1)×1010, (1.1±0.1)×1010 and (9.5±0.5)×109 CFU/mL, respectively. Compared with MRS static culture, the number of viable counts increased by 3.1, 3.8 and 4.6 times, respectively. The application of the research results would significantly improve the industrial production efficiency of L. fermentum.
[1] ZHAO Y, HONG K, ZHAO J, et al. Lactobacillus fermentum and its potential immunomodulatory properties[J]. Journal of Functional Foods, 2019, 56: 21-32.
[2] MIKELSAAR M, ZILMER M.Lactobacillus fermentum ME-3-an antimicrobial and antioxidative probiotic[J].Microbial Ecology in Health & Disease, 2009, 21(1):1-27.
[3] LYE H S, KATO T, LOW W Y, et al.Lactobacillus fermentum FTDC 8312 combats hypercholesterolemia via alteration of gut microbiota[J].Journal of Biotechnology, 2017, 262:75-83.
[4] OWUSU-KWARTENG J, TANO-DEBRAH K, AKABANDA F, et al.Technological properties and probiotic potential of Lactobacillus fermentum strains isolated from West African fermented millet dough[J].BMC Microbiology, 2015, 15(1):261.
[5] SHAH N, PATERL A, AMBALAM P, et al.Determination of an antimicrobial activity of Weissella confuse, Lactobacillus fermentum, and Lactobacillus plantarum against clinical pathogenic strains of Escherichia coli and Staphylococcus aureus in co-culture[J].Annals of Microbiology, 2016, 66(3):1 137-1 143.
[6] LIN Q, LI D, QIN H.Molecular cloning, expression and immobilization of glutamate decarboxylase from Lactobacillus fermentum YS2[J].Electronic Journal of Biotechnology, 2017, 27:8-13.
[7] 吴军林, 柏建玲, 莫树平, 等.高浓度培养乳酸菌发酵培养基的优化[J].食品工业科技, 2018, 39(9):96-101.
WU J L, BAI J L, MO S P, et al.Optimization of fermentation medium of lactic acid bacteria cultured in high concentration[J].Science and Technology of Food Industry, 2018, 39(9):96-101.
[8] 崔树茂. 乳酸菌的生长抑制和冻干存活的影响因素及规律[D].无锡:江南大学, 2017.
CUI S M.The impact factors and rules of growth inhibition and freeze-drying survival for lactic acid bacteria[D].Wuxi:Jiangnan University, 2017.
[9] DING S, TAN T.L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies[J].Process Biochemistry, 2006, 41(6):1 451-1 454.
[10] 陈卫, 崔树茂, 朱丹凤, 等.一种筛选适宜双歧杆菌增殖的氮源的培养基:中国, CN201910299559.1[P].2020-09-04.
CHEN W, CUI S M, ZHU D F, et al.A medium for screening nitrogen sources suitable for bifidobacteria proliferation:China, CN201910299559.1[P].2020-09-04.
[11] AMOROSO M J, NADRA M C M D, Oliver G.The growth and sugar utilization by Lactobacillus delbrueckii ssp.bulgaricus and Streptococcus salivarius ssp.thermophilus isolated from market yogurt[J].Lait, 1989, 69(6):519-528.
[12] 张爽, 张兰威, 韩雪.乳酸菌蛋白酶与发酵乳制品质量相关性研究进展[J].微生物学报, 2015, 55(12):1 530-1 536.
ZHANG S, ZHANG L W, HAN X.Lactic acid bacteria proteinase and quality of fermented dairy products-A review[J].Acta Microbiologica Sinica, 2015, 55(12):1 530-1 536.
[13] SAFARI R, MOTAMEDZADEGAN A, OVISSIPOUR M, et al.Use of hydrolysates from Yellowfin Tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria[J].Food & Bioprocess Technology, 2012, 5(1):73-79.
[14] 朱丹凤, 王园园, 崔树茂, 等.罗伊氏乳杆菌氮源利用的选择性与特征分析[J].食品与发酵工业, 2018, 44(11):35-41.
ZHU D F, WANG Y Y, CUI S M, et al.Selectivity and characteristic analysis of nitrogen source utilized by Lactobacillus reuteri[J].Food and Fermentation Industries, 2018, 44(11):35-41.
[15] 姚国强, 张雪梅, 高志敏, 等.Lactobacillus reuteri IMAU10240增殖培养基及高密度培养工艺优化[J].食品科学, 2017, 38(14):97-105.
YAO G Q, ZHANG X M, GAO Z M, et al.Optimization of enrichment medium and high cell density cultivation of Lactobacillus reuteri IMAU10240[J].Food Science, 2017, 38(14):97-105.
[16] 杨瑞冬, 李伯海, 王元弛, 等.Lactobacillus buchneri IMAU80233高密度发酵工艺优化[J].食品科学, 2019, 40(22):147-154.
YANG R D, LI B H, WANG Y C, et al.Study on high cell density culture of Lactobacillus buchneri IMAU80233[J].Food Science, 2019, 40(22):147-154.
[17] 赵春海, 赵士豪.镁钙对酿酒酵母发酵的影响[J].食品研究与开发, 2007(10):46-48.
ZHAO C H, ZHAO S H.Influence of calciumion and magnesiumion on fermentation of yeast[J].Food Research and Development, 2007(10):46-48.
[18] WU P, LI J Z, WANG Y L, et al.Promoting the growth of Rubrivivax gelatinosus in sewage purification by the addition of magnesium ions[J].Biochemical Engineering Journal, 2014, 91:66–71.
[19] 李兴峰. 乳杆菌生物合成苯乳酸的研究[D].无锡:江南大学, 2008.
LI X F.Production of phenyllactic acid (PLA) by lactobacilli[D].Wuxi:Jiangnan University, 2008.
[20] CHENG X, DONG Y, SU P, et al.Improvement of the fermentative activity of lactic acid bacteria starter culture by the addition of Mn2+[J].Applied Biochemistry & Biotechnology, 2014, 174(5):1 752-1 760.
[21] DISHISHA T, IBRAHIM M H A, CAVERO V H, et al.Improved propionic acid production from glycerol:Combining cyclic batch- and sequential batch fermentations with optimal nutrient composition[J].Bioresource Technology, 2015, 176:80-87.
[22] 王玉林, 黄洁, 崔树茂, 等.植物乳杆菌最适生长底物解析及高密度培养工艺[J].食品与发酵工业, 2020, 46(4):19-27.
WANG Y L, HUANG J, CUI S M, et al.Analysis of optimal growth substrate and high-density culture process of Lactobacillus plantarum[J].Food and Fermentation Industries, 2020, 46(4):19-27.
[23] PHAM P L, DUPONT I, ROY D, et al.Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation[J].Applied and Environmental Microbiology, 2000, 66(6):2 302-2 310.
[24] CARPENTER C E, BROADBENT J R.External concentration of organic acid anions and pH:Key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods[J].Journal of Food Science, 2010, 74(1):12-15.