综述与专题评论

肉类掺杂掺假的高光谱成像检测研究进展

  • 姜洪喆 ,
  • 蒋雪松 ,
  • 杨一 ,
  • 胡逸磊 ,
  • 陈青 ,
  • 施明宏 ,
  • 周宏平
展开
  • 1(南京林业大学 机械电子工程学院,江苏 南京,210037)
    2(北京农业智能装备技术研究中心,北京,100097)
    3(国家农业智能装备工程技术研究中心,北京,100097)
博士,讲师(周宏平教授为通讯作者,E-mail:hpzhou@njfu.edu.cn)

收稿日期: 2020-08-03

  修回日期: 2020-09-10

  网络出版日期: 2021-04-15

基金资助

南京林业大学引进高层次和高学历人才留学回国人员科研启动基金(163040114)

The progress of the detection of meats adulteration using hyperspectral imaging

  • JIANG Hongzhe ,
  • JIANG Xuesong ,
  • YANG Yi ,
  • HU Yilei ,
  • CHEN Qing ,
  • SHI Minghong ,
  • ZHOU Hongping
Expand
  • 1(College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China)
    2(Beijing Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China)
    3(National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China)

Received date: 2020-08-03

  Revised date: 2020-09-10

  Online published: 2021-04-15

摘要

肉类的掺杂掺假是国内外普遍关注的公共安全问题,对社会经济、健康、环境等方面具有潜在影响。近年来,不法商家为牟取暴利导致肉类掺杂掺假现象层出不穷、多种多样,针对此类问题研究行之有效的检测技术与方法以保障肉品真实性具有重要意义。高光谱成像技术以快速、非侵入、图谱合一等优势在食品农产品检测领域发展迅速,不仅可同时提取图像及光谱特征信息,还具备让肉类掺杂掺假“快速现形”的能力,具有较好的未来市场应用前景。该文介绍了肉类掺杂掺假现状,简述了高光谱成像原理及相关研究中数据解析方法,在探讨现有肉类掺杂掺假定性判别及定量预测研究进展基础上展望进一步研究突破方向,以期为相关肉品市场监管办法提供参考,也为其他类农产品掺假检测研究提供方法和思路借鉴。

本文引用格式

姜洪喆 , 蒋雪松 , 杨一 , 胡逸磊 , 陈青 , 施明宏 , 周宏平 . 肉类掺杂掺假的高光谱成像检测研究进展[J]. 食品与发酵工业, 2021 , 47(6) : 300 -305 . DOI: 10.13995/j.cnki.11-1802/ts.025254

Abstract

Meat adulteration is a public safety issue widely concerned at home and abroad, which has a potential impact on social economy, health and environment. In recent years, meat adulteration has emerged endlessly in a variety of ways due to the huge profits pursued by unscrupulous merchants. It is urgent to develop effective techniques and methods to ensure the authenticity of meat products. Hyperspectral imaging is a fast and non-invasive technique that combines spectra with images, and is developing rapidly in the field of food and agricultural products detection. Not only spectral and imaging characteristics can be extracted from hyperspectral images at the same time, but also it is capable to make a ‘quick appearance’ for meat adulteration. Therefore, hyperspectral imaging has good market application prospects in the future. In this study, the current status of meat adulteration was firstly introduced, and then the principle of hyperspectral imaging and data analysis methods in related studies were briefly described. After that, further breakthrough directions were prospected based on the discussion for research progress on existing researches for qualitative discrimination and quantitative prediction related to meat adulteration. The results are expected to help provide references and ideas for supervision measures of the meat market and studies of adulteration detection for other agricultural products.

参考文献

[1] 周光宏, 李春保, 徐幸莲.肉类食用品质评价方法研究进展[J].中国科技论文在线, 2007, 2(2):75-82.
ZHOU G H, Li C B, XU X L.Research progress of meat edible quality evaluation methods[J].Sciencepaper Online, 2007, 2(2):75-82.
[2] 陈加齐, 魏晓娟, 朱增勇, 等.近年来全球畜产品消费趋势分析及未来展望[J].农业展望, 2017, 13(1):70-76.
CHEN J Q, WEI X J, ZHU Z Y, et al.Consumption trend of global livestock products and its future prospects[J].Agricultural Outlook, 2017, 13(1):70-76.
[3] PREMANANDH J.Horse meat scandal-a wake-up call for regulatory authorities[J].Food Control, 2013, 34(2):568-569.
[4] BALLIN N Z.Authentication of meat and meat products[J].Meat Science, 2010, 86(3):577-587.
[5] SENTANDREU MÁ, SENTANDREU E.Authenticity of meat products:Tools against fraud[J].Food Research International, 2014, 60:19-29.
[6] HE H N, HONG X, FENG Y S, et al.Application of quadruple multiplex PCR detection for beef, duck, mutton and pork in mixed meat[J].Journal of Food and Nutrition Research, 2015, 3(6):392-398.
[7] MAZORRA-MANZANO M A, TORRES-LLANEZ M J, GONZALEZ-CORDOVA A F, et al.A capillary electrophoresis method for the determination of hydroxyproline as a collagen content index in meat products[J].Food Analytical Methods, 2012, 5(3):464-470.
[8] BLACK C, CHEVALLIER O P, COOPER K M, et al.Rapid detection and specific identification of offals within minced beef samples utilising ambient mass spectrometry[J].Scientific Reports, 2019, 9(1):6 295.
[9] MACEDO-SILVA A, BARBOSA S F C, ALKMIN M G A, et al.Hamburger meat identification by dot-ELISA[J].Meat Science, 2000, 56(2):189-192.
[10] CRIADO M, CASTRO-RUBIO F, GARCIA-RUIZ C, et al.Detection and quantitation of additions of soybean proteins in cured-meat products by perfusion reversed-phase high-performance liquid chromatography[J].Journal of Separation Science, 2005, 28(9-10):987-995.
[11] HASSOUN A, MAGE I, SCHMIDT W F, et al.Fraud in animal origin food products:Advances in emerging spectroscopic detection methods over the past five years[J].Foods, 2020, 9:1069.
[12] BOYACI I H, TEMIZ H T, UYSAL R S, et al.A novel method for discrimination of beef and horsemeat using Raman spectroscopy[J].Food Chemistry, 2014, 148:37-41.
[13] VELIOGLU H M, SEZER B, BILGE G, et al.Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS) [J].Meat Science, 2018, 138:28-33.
[14] 齐亮, 赵茂程, 赵婕, 等.基于太赫兹光谱分析的猪肉K值无损检测方法[J].农业机械学报, 2017, 48(12):346-353.
QI L, ZHAO M C, ZHAO J, et al.Non-destructive detection method of K value in pork with Terahertz spectroscopy[J].Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(12):346-353.
[15] ALAMPRESE C, CASALE M, SINELLI N, et al.Detection of minced beef adulteration with turkey meat by UV-vis, NIR and MIR spectroscopy[J].LWT- Food Science and Technology, 2013, 53(1):225-232.
[16] ZHAO M, O'DONNELL C, DOWNEY G.Detection of offal adulteration in beefburgers using near infrared reflectance spectroscopy and multivariate modelling[J].Journal of Near Infrared Spectroscopy, 2013, 21(4):237-248.
[17] MEZA-MÁRQUEZ O G, GALLARDO-VELÁZQUEZ T, OSORIO-REVILLA G.Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef[J].Meat Science, 2010, 86(2):511-519.
[18] ROHMAN A, SISMINDARI, ERWANTO Y, et al.Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy[J].Meat Science, 2010, 88(1):91-95.
[19] 高泽东, 郝群, 刘宇, 等.高光谱成像与应用技术发展[J].计测技术, 2019, 39(4):24-34.
GAO Z D, HAO Q, LIU Y, et al.Hyperspectral imaging and application technology development[J].Metrology and Measurement Technology, 2019, 39(4):24-34.
[20] 刘海, 郑福平, 熊振海, 等.高光谱成像技术在肉品品质评价中的应用[J].食品科学, 2018, 39(11):276-283.
LIU H, ZHENG F P, XIONG Z H, et al.Application of hyperspectral imaging technology in meat quality evaluation[J].Food Science, 2018, 39(11):276-283.
[21] BILGE G, VELIOGLU H M, SEZER B, et al.Identification of meat species by using laser-induced breakdown spectroscopy[J].Meat Science, 2016, 119:118-122.
[22] JIANG H Z, WANG W, ZHUANG H, et al.Hyperspectral imaging for a rapid detection and visualization of duck meat adulteration in beef[J].Food Analytical Methods, 2019, 12(10):2 205-2 215.
[23] 王伟, 姜洪喆, 贾贝贝, 等.基于高光谱成像的生鲜鸡肉糜中大豆蛋白含量检测[J].农业机械学报, 2019, 50(12):357-364.
WANG W, JIANG H Z, JIA B B, et al.Detection of soybean protein content in fresh minced chicken meat using hyperspectral imaging[J].Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(12):357-364.
[24] JIANG H Z, CHENG F N, SHI M H.Rapid identification and visualization of jowl meat adulteration in pork using hyperspectral imaging[J].Foods, 2020, 9:154.
[25] 杨君荣, 汪希伟, 赵茂程, 等.农产品品质光谱成像的空间预测规律[J].发光学报, 2018, 39(4):580-588.
YANG J R, WANG X W, ZHAO M C, et al.Law of spatial prediction of agro-product qualities based on spectral imaging[J].Chinese Journal of Luminescence, 2018, 39(4):580-588.
[26] KAMRUZZAMAN M, BARBIN D, ELMASRY G, et al.Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat[J].Innovative Food Science and Emerging Technologies, 2012, 16:316-325.
[27] AL-SARAYREH M, REIS M M, WEI Q Y, et al.Detection of red-meat adulteration by deep spectral-spatial features in hyperspectral images[J].Journal of Imaging, 2018, 4(5):63.
[28] AL-SARAYREH M, REIS M, WEI Q Y, et al.Potential of deep learning and snapshot hyperspectral imaging for classification of species in meat[J].Food Control, 2020, 117:107332.
[29] XIONG Z J, SUN D W, PU H B, et al.Combination of spectra and texture data of hyperspectral imaging for differentiating between free-range and broiler chicken meats[J].LWT-Food Science and Technology, 2015, 60(2):649-655.
[30] 王靖, 丁佳兴, 郭中华, 等.基于近红外高光谱成像技术的宁夏羊肉产地鉴别[J].食品工业科技, 2018, 39(2):250-254;260.
WANG J, DING J X, GUO Z H, et al.Identification of geographical origins of mutton in Ningxia based on the near infrared hyperspectral imaging technique[J].Science and Technology of Food Industry, 2018, 39(2):250-254.
[31] 王彩霞, 王松磊, 贺晓光, 等.基于可见/近红外高光谱成像技术的牛肉品种鉴别[J].食品工业科技, 2019, 40(12):241-247.
WANG C X, WANG S L, GUO X G, et al.Identification of beef breeds based on the Vis/NIR hyperspectral imaging technique[J].Science and Technology of Food Industry, 2019, 40(12):241-247.
[32] SILVA S, GUEDES C, RODRIGUES S, et al.Non-destructive imaging and spectroscopic techniques for assessment of carcass and meat quality in sheep and goats:A review[J].Foods, 2020, 9:1 074.
[33] KAMRUZZAMAN M, SUN D W, ELMASRY G, et al.Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis[J].Talanta, 2013, 103:130-136.
[34] KAMRUZZAMAN M, HAQUE M E, ALI M R.Hyperspectral imaging technique for offal quantification in minced meat[J].Journal of the Bangladesh Agricultural University, 2014, 12(1):189-194.
[35] 刘友华, 白亚斌, 邱祝福, 等.基于高光谱图像技术和波长选择方法的羊肉掺假检测方法研究[J].海南师范大学学报(自然科学版), 2015, 28(3):265-269.
LIU Y H, BAI Y B, QIU Z F, et al.Hyperspectral imaging technology and wavelength selection method for nondestructive detection of mutton adulteration[J].Journal of Hainan Normal University (Natural Science), 2015, 28(3):265-269.
[36] ROPODI A I, PAVLIDIS D E, MOHAREB F, et al.Multispectral image analysis approach to detect adulteration of beef and pork in raw meats[J].Food Research International, 2015, 67:12-18.
[37] ZHAO H T, FENG Y Z, CHEN W, et al.Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging[J].Meat Science, 2019, 151:75-81.
[38] KAMRUZZAMAN M, MAKINO Y, OSHITA S, et al.Assessment of visible near-infrared hyperspectral imaging as a tool for detection of horsemeat adulteration in minced beef[J].Food and Bioprocess Technology, 2015, 8(5):1 054-1 062.
[39] ROPODI A I, PANAGOU E Z, NYCHAS G J E.Multispectral imaging (MSI):A promising method for the detection of minced beef adulteration with horsemeat[J].Food Control, 2017, 73:57-63.
[40] KAMRUZZAMAN M, MAKINO Y, OSHITA S.Hyperspectral imaging in tandem with multivariate analysis and image processing for non-invasive detection and visualization of pork adulteration in minced beef[J].Analytical Methods, 2015, 7(18):7 496-7 502.
[41] 白亚斌, 刘友华, 丁崇毅, 等.基于高光谱技术的牛肉-猪肉掺假检测[J].海南师范大学学报(自然科学版), 2015, 28(3):270-273.
BAI Y B, LIU Y H, DING C Y, et al.Quantitative detection of beef-pork adulteration by hyperspectral imaging[J].Journal of Hainan Normal University (Natural Science), 2015, 28(3):270-273.
[42] KAMRUZZAMAN M, MAKINO Y, OSHITA S.Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning[J].Journal of Food Engineering, 2016, 170:8-15.
[43] 孙宗保, 王天真, 李君奎, 等.高光谱成像的牛肉丸掺假检测[J].光谱学与光谱分析, 2020, 40(7):2 208-2 214.
SUN Z B, WANG T Z, LI J K, et al.Detecting adulterated beef meatball using hyperspectral imaging technology[J].Spectroscopy and Spectral Analysis, 2020, 40(7):2 208-2 214.
[44] 朱亚东, 何鸿举, 王魏, 等.高光谱成像技术结合线性回归算法快速预测鸡肉掺假牛肉[J].食品工业科技, 2020, 41(4):184-189.
ZHU Y D, HE H J, WANG W, et al.Quick detection of beef adulteration using hyperspectral imaging technology combined with linear regression algorithm[J].Science and Technology of Food Industry, 2020, 41(4):184-189.
[45] ZHENG X C, LI Y Y, WEI W S, et al.Detection of adulteration with duck meat in minced lamb meat by using visible near-infrared hyperspectral imaging[J].Meat Science, 2018, 149:55-62.
[46] 杨清华, 彭彦昆, 郑晓春.基于阈值选取高光谱感兴趣区域的牛肉掺假检测[J].食品安全质量检测学报, 2018, 9(11):2 710-2 715.
YANG Q H, PENG Y K, ZHENG X C.Detection of adulterated beef based on selecting hyperspectral region of interest with threshold[J].Food Safety and Quality Detection Technology, 2018, 9(11):2 710-2 715.
[47] RADY A, ADEDEJI A A.Application of hyperspectral imaging and machine learning methods to detect and quantify adulterants in minced meats[J/OL].Food Analytical Methods, 2020.DOI:10.1007/S12161-020-0719-1.
[48] ZHANG Y, JIANG H Z, WANG W.Feasibility of the detection of carrageenan adulteration in chicken meat using visible/near-infrared (Vis/NIR) hyperspectral imaging[J].Applied Sciences, 2019, 9(18):3 926.
[49] 何鸿举, 朱亚东, 陈岩, 等.基于高光谱成像快速检测牛肉糜中大豆分离蛋白掺入量[J/OL].食品工业科技, http://kns.cnki.net/kcms/detail/11.1759.TS.20200408.1544.035.html.
HE H J, ZHU Y D, CHEN Y, et al.Rapid detection of soy protein isolate concentration in minced beef by hyperspectral imaging technology[J/OL].Science and Technology of Food Industry, http://kns.cnki.net/kcms/detail/11.1759.TS.20200408.1544.035.html.
[50] WU D, SHI H, HE Y, et al.Potential of hyperspectral imaging and multivariate analysis for rapid and non-invasive detection of gelatin adulteration in prawn[J].Journal of Food Engineering, 2013, 119(3):680-686.
[51] 何鸿举, 朱亚东, 王魏, 等.基于近红外高光谱成像快速无损检测注胶肉研究[J].食品工业科技, 2020, 41(10):219-223.
HE H J, ZHU Y D, WANG W, et al.Rapid nondestructive detection of glue-injected meat by NIR hyperspectral imaging technology[J].Science and Technology of Food Industry, 2020, 41(10):219-223.
[52] LIU JINXIA, CAO YUE, WANG QIU, et al.Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis[J].Food Chemistry, 2016, 190:938-943.
文章导航

/