研究报告

一株贝莱斯芽孢杆菌的分离鉴定及其益生潜力评价

  • 娄向弟 ,
  • 张向向 ,
  • 贺江 ,
  • 莫德钱 ,
  • 王永慧 ,
  • 熊建华 ,
  • 郜彦彦
展开
  • 1(江西农业大学 食品科学与工程学院,江西 南昌,330045)
    2(江苏沿海地区农业科学研究所,江苏 盐城,224002)
第一作者:硕士,研究实习员(郜彦彦讲师为通信作者,E-mail:gaoyy02@hotmail.com)

收稿日期: 2022-07-15

  修回日期: 2022-08-08

  网络出版日期: 2023-04-06

基金资助

江西省教育厅科技项目(GJJ160414);江西省现代农业产业技术体系项目(JXARS-3)

Isolation and identification of a Bacillus venezensis and its probiotic potential evaluation

  • LOU Xiangdi ,
  • ZHANG Xiangxiang ,
  • HE Jiang ,
  • MO Deqian ,
  • WANG Yonghui ,
  • XIONG Jianhua ,
  • GAO Yanyan
Expand
  • 1(College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China)
    2(Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China)

Received date: 2022-07-15

  Revised date: 2022-08-08

  Online published: 2023-04-06

摘要

贝莱斯芽孢杆菌(Bacillus velezensis)为芽孢杆菌属新型细菌。采用梯度稀释法及抑菌圈法进行菌株的分离和筛选,综合形态观察和16S rDNA序列比对对分离的菌株进行鉴定。通过高盐、胆盐、pH、模拟胃肠液、温度和抗生素等耐受性测定,结合体外抗氧化能力、抑菌活性以及溶血和动物饲喂试验,对分离菌株进行益生潜力评价。结果显示,从农家酱中分离出一株菌PJP10,初步鉴定为贝莱斯芽孢杆菌。该菌对金黄色葡萄球菌(Staphylococcus aureus)、肠炎沙门氏菌(Salmonella enteritidis)、副溶血弧菌(Vibrio parahaemolyticus)、青枯雷尔氏菌(Ralstonia solanacearum)和黑曲霉(Aspergillus niger)等拮抗效果显著,可以耐受8% NaCl、0.5%胆盐、100 ℃水浴、pH 2和模拟胃肠道的环境,对于头孢类、阿奇霉素等14种常用抗生素敏感。同时菌株PJP10无菌发酵液具有较好的抗氧化活性,对ABTS阳离子和DPPH自由基的清除率分别为(95.66±3.1)%和(44.84±2.2)%,Fe3+还原能力和Fe2+螯合率分别为(301.9±3.7) μmol/L和(76.88±2.2)%。此外,安全性试验表明无溶血圈,彭泽鲫饲喂未见异常。综上,贝莱斯芽孢杆菌PJP10具有良好的益生潜力,在食品行业中具有较高的应用价值。

本文引用格式

娄向弟 , 张向向 , 贺江 , 莫德钱 , 王永慧 , 熊建华 , 郜彦彦 . 一株贝莱斯芽孢杆菌的分离鉴定及其益生潜力评价[J]. 食品与发酵工业, 2023 , 49(5) : 143 -150 . DOI: 10.13995/j.cnki.11-1802/ts.032996

Abstract

Bacillus velezensis is a new species of the genus Bacillus. Separation and screening were carried out by gradient dilution method and the inhibition zone method, and the isolated strain was identified according to morphological observation and 16S rDNA sequence alignment. The tolerance to high salt, bile salt, simulated gastrointestinal fluid, temperature and antibiotics were tested, and antioxidant activity in vitro, antimicrobial susceptibility, the hemolysis and feeding test were examined to evaluate the probiotic potential of the strain. The results showed that the strain PJP10 was isolated from farmhouse fermented soybean paste and identified as B. velezensis. The PJP10 had significant inhibitory effect on various pathogens including Staphylococcus aureus, Salmonella enteritidis, Vibrio parahaemolyticus, Ralstonia solanacearum and Aspergillus niger. And it could tolerate 8% (mass fraction) NaCl, 0.5% (mass fraction) bile salt, 100 ℃, pH 2 and simulated gastrointestinal environment, and it was sensitive to 14 commonly used antibiotics such as cephalosporin and azithromycin. The fermentation broth of stain PJP10 exhibited good antioxidant activity with (95.66±3.1)% of ABTS cation radical scavenging rate, (44.84±2.2)% of DPPH free radical scavenging rate, (301.9±3.7) μmol/L of ferric ion reducing antioxidant power and (76.88±2.2)% of ferrous ion chelating rate. In addition, PJP10 showed no hemolysis activity and was safe to Carassius auratus var. Pengze. In conclusion, Bacillus velezensis PJP10 has good probiotic potential, indicating its application value in food industry.

参考文献

[1] RUIZ-GARCÍA C, BÉJAR V, MARTÍNEZ-CHECA F, et al.Bacillus velezensis sp.nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain[J].International Journal of Systematic and Evolutionary Microbiology, 2005, 55(1):191-195.
[2] RABBEE M F, ALI M S, CHOI J, et al.Bacillus velezensis:A valuable member of bioactive molecules within plant microbiomes[J].Molecules (Basel, Switzerland), 2019, 24(6):1046.
[3] HASHEM A, TABASSUM B, FATHI ABD ALLAH E.Bacillus subtilis:A plant-growth promoting rhizobacterium that also impacts biotic stress[J].Saudi Journal of Biological Sciences, 2019, 26(6):1 291-1 297.
[4] CHEN X H, SCHOLZ R, BORRISS M, et al.Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease[J].Journal of Biotechnology, 2009, 140(1-2):38-44.
[5] SULTANA O F, LEE S, SEO H, et al.Biodegradation and removal of PAHs by Bacillus velezensis isolated from fermented food[J].Journal of Microbiology and Biotechnology, 2021, 31(7):999-1 010.
[6] LU M Y, GAO Z X, XING S Q, et al.Purification, characterization, and chemical modification of Bacillus velezensis SN-14 fibrinolytic enzyme[J].International Journal of Biological Macromolecules, 2021, 177:601-609.
[7] 陈龙, 吴兴利, 李立佳, 等.一株高产内切纤维素酶贝莱斯芽孢杆菌的产酶条件优化及酶学性质分析[J].中国畜牧兽医, 2019, 46(5):1 353-1 361.
CHEN L, WU X L, LI L J, et al.Optimization of enzyme production conditions and analysis of enzymatic properties of a high-yield endocellulolytic enzyme Bacillus velezensis[J].China Animal Husbandry & Veterinary Medicine, 2019, 46(5):1 353-1 361.
[8] 张德锋, 高艳侠, 王亚军, 等.贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J].微生物学通报, 2020, 47(11):3 634-3 649.
ZHANG D F, GAO Y X, WANG Y J, et al.Advances in taxonomy, antagonistic function and application of Bacillus velezensis[J].Microbiology China, 2020, 47(11):3 634-3 649.
[9] 孙平平, 崔建潮, 贾晓辉, 等.贝莱斯芽孢杆菌L-1对梨灰霉和青霉病菌的抑制作用评价及全基因组分析[J].微生物学报, 2018, 58(9):1 637-1 646.
SUN P P, CUI J C, JIA X H, et al.Complete genome analysis of Bacillus velezensis L-1 and its inhibitory effect on pear gray and blue mold[J].Acta Microbiologica Sinica, 2018, 58(9):1 637-1 646.
[10] 任建雯, 罗云艳, 冯印印, 等.贝莱斯芽孢杆菌RJW-5-5的分离鉴定及细菌素、抗菌肽基因簇挖掘[J].微生物学通报, 2021, 48(3):742-754.
REN J W, LUO Y Y, FENG Y Y, et al.Isolation and identification of Bacillus velezensis RJW-5-5 and gene cluster mining of bacteriocin and RiPPs[J].Microbiology China, 2021, 48(3):742-754.
[11] 朱亚珠, 夏率博, 陈琳, 等.一株贝莱斯芽孢杆菌的生长特性及抑菌活性研究[J].食品科学技术学报, 2022, 40(1):85-92.
ZHU Y Z, XIA S B, CHEN L, et al.Study on growth characteristics and antimicrobial activities of Bacillus velezensis[J].Journal of Food Science and Technology, 2022, 40(1):85-92.
[12] 段云峰, 蔡峰, 律娜, 等.益生菌促进胃肠道健康的机制及应用[J].微生物学报, 2022, 62(3):836-847.
DUAN Y F, CAI F, LYU N, et al.The mechanism and application of probiotics in promoting gastrointestinal health[J].Acta Microbiologica Sinica, 2022, 62(3):836-847.
[13] ASHRAF R, SMITH S C.Commercial lactic acid bacteria and probiotic strains - tolerance to bile, pepsin and antibiotics[J].International Food Research Journal, 2016, 23:777-789.
[14] MARCO M L, PAVAN S, KLEEREBEZEM M.Towards understanding molecular modes of probiotic action[J].Current Opinion in Biotechnology, 2006, 17(2):204-210.
[15] LE LAY C, COTON E, LE BLAY G, et al.Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria[J].International Journal of Food Microbiology, 2016, 239:79-85.
[16] 刘秀侠, 徐海燕, 辛国芹, 等.11株枯草芽孢杆菌益生特性研究[J].中国畜牧兽医, 2017, 44(8):2 333-2 341.
LIU X X, XU H Y, XIN G Q, et al.Study on probiotic characteristics of eleven Bacillus subtilis strains[J].China Animal Husbandry & Veterinary Medicine, 2017, 44(8):2 333-2 341.
[17] 吴艳丽, 刘朋, 苏咏欣, 等.嗜黏蛋白阿克曼氏菌ATCC BAA-835肠道益生作用的体外评价[J].食品与发酵工业, 2022, 48(2):156-162.
WU Y L, LIU P, SU Y X, et al.Intestinal probiotic effect of Akkermansia muciniphila ATCC BAA-835 in vitro[J].Food and Fermentation Industries, 2022, 48(2):156-162.
[18] 孟歌, 崔宝凯, 李春道, 等.药用真菌灵芝液体培养过程中的抗氧化活性研究[J].菌物学报, 2018, 37(4):486-501.
MENG G, CUI B K, LI C D, et al.Antioxidant activities of medicinal fungus Ganoderma Lingzhi in the process of liquid cultivation[J].Mycosystema, 2018, 37(4):486-501.
[19] TANG W, XING Z Q, LI C, et al.Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2[J].Food Chemistry, 2017, 221:1 642-1 649.
[20] BENZIE I F, STRAIN J J.The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”:The FRAP assay[J].Analytical Biochemistry, 1996, 239(1):70-76.
[21] DECKER E A, WELCH B.Role of ferritin as a lipid oxidation catalyst in muscle food[J].Journal of Agricultural and Food Chemistry, 1990, 38(3):674-677.
[22] 矫艳平, 余萍, 赵迪, 等.植物乳杆菌HCS03-001安全性评价及其益生特性分析[J].食品工业科技, 2022, 43(5):165-171.
JIAO Y P, YU P, ZHAO D, et al.Safety evaluation and probiotic characteristics analysis of Lactobacillus plantarum HCS03-001[J].Science and Technology of Food Industry, 2022, 43(5):165-171.
[23] 于景艳, 王洋, 曾祥茜, 等.益生菌和不同水平壳聚糖对黄金鲫非特异性免疫力及抗病力的影响[J].中国饲料, 2020(11):69-76.
YU J Y, WANG Y, ZENG X X, et al.Effects of probiotics and chitosan on non-special immunity and disease resistance of the golden Carassius auratus[J].China Feed, 2020(11):69-76.
[24] 解文利, 吴雨烔, 白雪, 等.四川传统泡菜中乳酸菌的分离鉴定及抗氧化评估[J].食品与发酵科技, 2022, 58(1):35-41.
XIE W L, WU Y T, BAI X, et al.Isolation, identification and antioxidant evaluation of lactic acid bacteria from Sichuan traditional pickles[J].Food and Fermentation Science & Technology, 2022, 58(1):35-41.
[25] 吴石金, 张嘉琳, 陈彦霖, 等.发酵食品中抗氧化乳酸菌的筛选与鉴定[J].浙江工业大学学报, 2019, 47(6):685-691;698.
WU S J, ZHANG J L, CHEN Y L, et al.Screening and identification of lactic acid bacteria strains with antioxidant activities in fermented food[J].Journal of Zhejiang University of Technology, 2019, 47(6):685-691;698.
[26] 肖宇, 李键, 周钺, 等.从藏灵菇中筛选高抗氧化能力乳酸菌[J].食品与发酵工业, 2019, 45(22):179-184.
XIAO Y, LI J, ZHOU Y, et al.Lactic acid bacteria with high antioxidant capacity from Tibetan kefir[J].Food and Fermentation Industries, 2019, 45(22):179-184.
[27] 李权威, 张开屏, 赵艳红, 等.风干羊肉中乳酸菌的体内外抗氧化特性[J].微生物学通报, 2020, 47(12):4 094-4 104.
LI Q W, ZHANG K P, ZHAO Y H, et al.Antioxidation properties in vitro and in vivo of Lactobacillus in air-dried mutton[J].Microbiology China, 2020, 47(12):4 094-4 104.
[28] GOSWAMI D, THAKKER J N, DHANDHUKIA P C.Portraying mechanics of plant growth promoting rhizobacteria (PGPR):A review[J].Cogent Food & Agriculture, 2016, 2(1):1127500.
[29] SUN X L, XU Z H, XIE J Y, et al.Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J].The ISME Journal, 2022, 16(3):774-787.
文章导航

/