综述与专题评论

红曲色素的生物活性及其作用机制研究进展

  • 玛合沙提·努尔江 ,
  • 包天雨 ,
  • 张添琪 ,
  • 刘畅 ,
  • 王旭 ,
  • 夏秀芳
展开
  • (东北农业大学 食品学院,黑龙江 哈尔滨,150030)
硕士研究生(王旭讲师和夏秀芳教授为共同通信作者,E-mail:wangxu@neau.edu.cn;Xxfang524@163.com)

收稿日期: 2022-03-24

  修回日期: 2022-05-16

  网络出版日期: 2023-04-14

基金资助

东北农业大学“青年才俊”项目(19QC28);黑龙江省博士后资助项目(LBH-Z21042)

Advances in research on the biological activity and action mechanism of Monascus pigments

  • NUERJIANG Maheshati ,
  • BAO Tianyu ,
  • ZHANG Tianqi ,
  • LIU Chang ,
  • WANG Xu ,
  • XIA Xiufang
Expand
  • (College of Food Science, Northeast Agricultural University, Harbin 150030, China)

Received date: 2022-03-24

  Revised date: 2022-05-16

  Online published: 2023-04-14

摘要

红曲色素是红曲霉菌代谢产生的聚酮类次级代谢产物,作为天然着色剂广泛应用于肉类食品、化妆品和纺织行业。因含有羟基、醚键、羰基等官能团和共轭结构,其具有降血脂、抗氧化、降血糖、抗阿尔兹海默症等功能特性,已成为开发功能保健食品和药品的新热点。该文概述了红曲色素的组成、物理化学特性、生物合成途径;分析了红曲色素结构特性与生物活性之间的关系。重点综述了红曲色素功能特性机制:红曲色素可以通过降低体内脂类物质的合成、提高血清中高密度脂蛋白、降低低密度脂蛋白和改善肠道菌群组成4个途径达到降血脂的功能特性;红曲色素可以清除体内活性自由基,抑制脂质过氧化,表现出高抗氧化活性;其作用在胰腺、肝脏、脂肪和骨骼肌组织,通过PPARγ和Nrf2通路,保护胰岛β细胞、促进胰岛素分泌、增加靶细胞对胰岛素敏感性,达到降血糖效果;红曲色素还通过减少Tau蛋白磷酸化和Aβ蓄积来发挥抗阿尔兹海默症的作用效果,为红曲色素功能特性深入挖掘和综合开发利用提供理论支撑。

本文引用格式

玛合沙提·努尔江 , 包天雨 , 张添琪 , 刘畅 , 王旭 , 夏秀芳 . 红曲色素的生物活性及其作用机制研究进展[J]. 食品与发酵工业, 2023 , 49(6) : 347 -356 . DOI: 10.13995/j.cnki.11-1802/ts.031410

Abstract

Monascus pigments are the secondary metabolite with a polyketide structure of Monascus species, which have been widely used in meat, cosmetics, and textile industries as a natural colorant. Because it contains special conjugated structures and functional groups (hydroxyl, ether bond, carbonyl, etc.), it possesses functional properties on hypolipidemia, anti-oxidation, hypoglycemia, and anti-Alzheimer's disease. It has become a new hot spot to develop functional foods and drugs and explore its mechanism. The composition, biochemical properties, biosynthetic pathway, and structural characteristics of Monascus pigments were summarized in this paper. At the same time, it also focused on revealing the hypolipidemic activity of Monascus pigments by increasing high-density lipoprotein cholesterol levels, reducing low-density lipoprotein cholesterol levels, improving the composition of intestinal flora, and increasing the abundance of beneficial bacteria. The high antioxidant activity was exhibited by removing active free radicals in the body and inhibiting lipid peroxidation. Monascus pigments could achieve the effect of hypoglycemia by protecting pancreatic β-cells, promoting insulin secretion, and increasing the sensitivity of target cells to insulin in the pancreas, liver, adipose, and skeletal muscle tissues, through the PPARγ and Nrf2 pathways. The anti-Alzheimer's disease effect of Monascus pigments and its mechanism was revealed by reducing Tau phosphorylation and Aβ accumulation. Therefore, the review can provide theoretical support for the deep excavation and comprehensive utilization of Monascus pigments.

参考文献

[1] AGBOYIBOR C, KONG W B, CHEN D, et al.Monascus pigments production, composition, bioactivity and its application:A review[J].Biocatalysis and Agricultural Biotechnology, 2018, 16:433-447.
[2] LEE C L, HUNG Y P, HSU Y W, et al.Monascin and ankaflavin have more anti-atherosclerosis effect and less side effect involving increasing creatinine phosphokinase activity than monacolin K under the same dosages [J].Journal of Agricultural and Food Chemistry, 2013, 61(1):143-150.
[3] WU H C, CHENG M J, WU M D, et al.Secondary metabolites from the fermented rice of the fungus Monascus purpureus and their bioactivities[J].Natural Product Research, 2019, 33(24):3 541-3 550.
[4] KOLI S H, SURYAWANSHI R K, MOHITE B V, et al.Prospective of Monascus pigments as an additive to commercial sunscreens[J].Natural Product Communications, 2019, 14(12):1-7.
[5] 付丽芳, 林家莲.新型功能食品:红曲面包的研制[J].粮油加工与食品机械, 2002(1):45-46.
FU L F, LIN J L.Development of a new functional food-Red rice bread[J]. Machinery for Cereals, Oil and Food Processing, 2002(1):45-46.
[6] 金二庆. 红曲菌发酵对广式腊肠感官、风味及保藏特性的影响[D].广州:暨南大学, 2017.
JIN E Q.The quality of sensory and flavor and preservation of cantonese sausage fermented by Monascus[D].Guangzhou:Jinan University, 2017.
[7] 吴玉峰. 高产洛伐他汀红曲菌的选育及其在黄酒中的应用研究[D].无锡:江南大学:2021.
WU Y F.Breeding of high lovastatin-producing Monascus and its application in Huangjiu[D].Wuxi:Jiangnan University, 2021.
[8] SONG J, ZHANG J J, SU Y, et al.Monascus vinegar-mediated alternation of gut microbiota and its correlation with lipid metabolism and inflammation in hyperlipidemic rats[J].Journal of Functional Foods, 2020, 74:104 152-104 161.
[9] CHEN W P, FENG Y L, MOLNÁR I, et al.Nature and nurture:Confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments[J].Natural Product Reports, 2019, 36(4):561-572.
[10] LIU L J, WU S, WANG W, et al.Sulfonation of Monascus pigments to produce water-soluble yellow pigments[J].Dyes and Pigments, 2020, 173:107965.
[11] CHAUDHARY V, KATYAL P, POONIA A K, et al.Natural pigment from Monascus:The production and therapeutic significance[J].Journal of Applied Microbiology, 2022,133(1):18-38.
[12] HE J T, JIA M X, LI W, et al.Toward improvements for enhancement the productivity and color value of Monascus pigments:A critical review with recent updates[J].Critical Reviews in Food Science and Nutrition, 2022,62(26):7 139-7 153.
[13] LIU L J, ZHAO J X, HUANG Y L, et al.Diversifying of chemical structure of native Monascus pigments[J].Frontiers in Microbiology, 2018, 9:3 143-3 155.
[14] BALAKRISHNAN B, PARK S H, KWON H J.Inactivation of the oxidase gene mppG results in the selective loss of orange azaphilone pigments in Monascus purpureus[J].Applied Biological Chemistry, 2017, 60(4):437-446.
[15] BALAKRISHNAN B, PARK S H, KWON H J, et al.A reductase gene mppE controls yellow component production in azaphilone polyketide pathway of Monascus[J].Biotechnology Letters, 2017, 39(1):163-169.
[16] HSU L C, LIANG Y H, HSU Y W, et al.Anti-inflammatory properties of yellow and orange pigments from Monascus purpureus NTU 568[J].Journal of Agricultural and Food Chemistry, 2013, 61(11):2 796-2 802.
[17] WU L, ZHOU K X, CHEN F, et al.Comparative study on the antioxidant activity of Monascus yellow pigments from two different types of Hongqu-functional Qu and coloring Qu[J].Frontiers in Microbiology, 2021, 12:715295.
[18] ZHOU W B, GUO R L, GUO W L, et al.Monascus yellow, red and orange pigments from red yeast rice ameliorate lipid metabolic disorders and gut microbiota dysbiosis in Wistar rats fed on a high-fat diet[J].Food and Function, 2019, 10(2):1 073-1 084.
[19] LEE C L, WEN J Y, HSU Y W, et al.The blood lipid regulation of Monascus-produced monascin and ankaflavin via the suppression of low-density lipoprotein cholesterol assembly and stimulation of apolipoprotein A1 expression in the liver[J].Journal of Microbiology, Immunology, and Infection.2018, 51(1):27-37.
[20] LEE C L, KUNG Y H, WU C L, et al.Monascin and ankaflavin act as novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea[J].Journal of Agricultural and Food Chemistry, 2010, 58(16):9 013-9 019.
[21] BUNNOY A, SAENPHET K, LUMYONG S, et al.Monascus purpureus-fermented Thai glutinous rice reduces blood and hepatic cholesterol and hepatic steatosis concentrations in diet-induced hypercholesterolemic rats[J].BMC Complementary and Alternative Medicine, 2015, 15:88.
[22] WEI R R, HE M H, SANG Z P, et al.Structurally diverse Monascus pigments with hypolipidemic and hepatoprotective activities from highland barley Monascus[J].Fitoterapia, 2022, 156:105090.
[23] HSU W H, HUANG Y C, LEE B H, et al.The improvements of ankaflavin isolated from Monascus-fermented products on dyslipidemia in high-fat diet-induced hasmster[J].Journal of Functional Foods, 2013, 5(1):434-443.
[24] HSU W H, CHEN T H, LEE B H, et al.Monascin and ankaflavin act as natural AMPK activators with PPARα agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice[J].Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2014, 64:94-103.
[25] GUARDAMAGNA O, ABELLO F, BARACCO V, et al.The treatment of hypercholesterolemic children:Efficacy and safety of a combination of red yeast rice extract and policosanols[J].Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 2011, 21(6):424-429.
[26] LIU Q X, LI Y C, SONG X, et al.Both gut microbiota and cytokines act to atherosclerosis in ApoE-/- mice[J].Microbial Pathogenesis, 2020, 138:103 827-103 833.
[27] HUANG Z R, CHEN M, GUO W L, et al.Monascus purpureus-fermented common buckwheat protects against dyslipidemia and non-alcoholic fatty liver disease through the regulation of liver metabolome and intestinal microbiome[J].Food Research International, 2020, 136:109 511-109 524.
[28] 彭荣, 蔡琼, 贺稚非, 等.红曲霉对发酵兔肉香肠抗氧化活性及生物胺含量的影响[J].食品与发酵工业, 2020, 46 (19):48-56.
PENG R, CAI Q, HE Z F, et al.Effects of Monascus sp.f on antioxidant activity and biogenic amine content of fermented rabbit sausages[J].Food and Fermentation Industries, 2020, 46(19):48-56.
[29] ZHANG X W, LIU C H, TIAN W H, et al.Theoretical and experimental investigation of the antioxidative activity of monascin[J].Food and Function, 2020, 11(7):5 915-5 923.
[30] HUANG Q, ZHANG H, XUE D, et al.Enhancement of antioxidant activity of Radix Puerariae and red yeast rice by mixed fermentation with Monascus purpureus[J].Food Chemistry, 2017, 226:89-94.
[31] YIN Y, HAN W, CAO Y.Association between activities of SOD, MDA and Na+-K+-ATPase in peripheral blood of patients with acute myocardial infarction and the complication of varying degrees of arrhythmia[J].Hellenic Journal of Cardiology, 2019, 60(6):366-371.
[32] URSINI F, MAIORINO M.Lipid peroxidation and ferroptosis:The role of GSH and GPx4[J].Free Radical Biology and Medicine, 2020, 152:175-185.
[33] RAJASEKARAN A, KALAIVANI M. Protective effect of Monascus fermented rice against STZ-induced diabetic oxidative stress in kidney of rats[J].Journal of Food Science and Technology, 2015, 52(3):1 434-1 433.
[34] International Diabetes Federation.IDF diabetes atlas 9th edition[EB/OL].(2021-11-8) [2021-12-4].https://diabetesatlas.org/.
[35] HSU W H, PAN T M.A novel PPARgamma agonist monascin's potential application in diabetes prevention[J].Food and Function, 2014, 5(7):1 334-1 340.
[36] SHI Y C, PAN T M.Antioxidant and pancreas-protective effect of red mold fermented products on streptozotocin-induced diabetic rats[J].Journal of the Science of Food and Agriculture, 2010, 90(14):2 519-2 525.
[37] LEE B H, HSU W H, HUANG T, et al.Monascin improves diabetes and dyslipidemia by regulating PPARγ and inhibiting lipogenesis in fructose-rich diet-induced C57BL/6 mice[J].Food and Function,2013, 4(6):950-959.
[38] CHANG J C, WU M C, LIU I M, et al.Plasma glucose-lowering action of Hon-Chi in streptozotocin-induced diabetic rats[J].Hormone and Metabolic Research, 2006, 38(2):76-81.
[39] HSU W H, LEE B H, LI C H, et al.Monascin and AITC attenuate methylglyoxal-Induced PPARγ phosphorylation and degradation through inhibition of the oxidative stress/PKC pathway depending on Nrf2 activation[J].Journal of Agricultural and Food Chemistry 2013, 61(25):5 996-6 006.
[40] LI B, YE J J, LIU R X, et al.Programmed cell death 5 improves skeletal muscle insulin resistance by inhibiting IRS-1 ubiquitination through stabilization of MDM2[J].Life Sciences, 2021, 285:119 918.
[41] HSU W H, LIAO T H, LEE B H, et al.Ankaflavin regulates adipocyte function and attenuates hyperglycemia caused by high-fat diet via PPAR-γ activation[J].Journal of Functional Foods, 2013, 5(1):124-132.
[42] LEE B H, HSU W H, LIAO T H, et al.The Monascus metabolite monascin against TNF-α induced insulin resistance via suppressing PPAR-γ phosphorylation in C2C12 myotubes[J].Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2011, 49(10):2 609-2 617.
[43] HSU L C, LIANG Y H, HSU Y W, et al.Anti-inflammatory properties of yellow and orange pigments from Monascus purpureus NTU 568[J].Journal of Agricultural and Food Chemistry, 2013, 61(11):2 796-2 802.
[44] ZHENG Y Q, PAN Q S, MO L D, et al.Monascus pigment rubropunctatin derivative FZU-H reduces Aβ (1-42)-induced neurotoxicity in Neuro-2A cells[J].RSC Advances, 2018, 8(31): 17 389-17 398.
[45] CHEN C L, CHANG K Y, PAN T M.Monascus purpureus NTU 568 fermented product improves memory and learning ability in rats with aluminium-induced Alzheimer's disease[J].Journal of Functional Foods, 2016, 21:167-177.
[46] TAKEDA S.Progression of Alzheimer's disease, tau propagation, and its modifiable risk factors[J].Neuroscience Research, 2019, 141:36-42.
[47] SANDHU P, NAEEM M M, LU C Y, et al.Ser422 phosphorylation blocks human Tau cleavage by caspase-3:Biochemical implications to Alzheimer's disease[J].Bioorganic and Medicinal Chemistry Letters, 2017, 27(3):642-652.
[48] CHEIGNON C, TOMAS M, BONNEFONT-ROUSSELOT D, et al.Oxidative stress and the amyloid beta peptide in Alzheimer's disease[J].Redox Biology, 2018, 14:450-464.
[49] LEE C L, PAN T M.The prevention of Alzheimer's disease and Parkinson's disease by Monascus purpureus NTU 568-fermented compounds[J].Journal of Alzheimer's Disease and Parkinsonism, 2017, 7(4):1-8.
[50] LEE C L, LIN P Y, HSU Y W, et al.Monascus-fermented monascin and ankaflavin improve the memory and learning ability in amyloid β-protein intracerebroventricular-infused rat via the suppression of Alzheimer's disease risk factors[J].Journal of Functional Foods, 2015, 18:387-399.
文章导航

/