研究报告

自然发酵乳中嗜热链球菌糖代谢特征与功能基因分析

  • 杜萍 ,
  • 孙志宏 ,
  • 赵洁
展开
  • (乳品生物技术与工程教育部重点实验室,农业部奶制品加工重点实验室,内蒙古乳品生物技术与工程重点实验室,乳酸菌与发酵乳制品省部共建协同创新中心(内蒙古农业大学),内蒙古 呼和浩特,010018)
硕士研究生(赵洁讲师为通信作者,E-mail:nmgzj@imau.edu.cn)

收稿日期: 2022-09-15

  修回日期: 2022-10-03

  网络出版日期: 2023-06-05

基金资助

国家自然科学基金项目(31901670);内蒙古自治区自然科学基金项目(2019BS03003);内蒙古农业大学高层次人才引进科研启动项目(NDYB2018-46)

Characterization and functional gene analysis of glucose metabolism of Streptococcus thermophilus in naturally fermented milk

  • DU Ping ,
  • SUN Zhihong ,
  • ZHAO Jie
Expand
  • (Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot 010018, China)

Received date: 2022-09-15

  Revised date: 2022-10-03

  Online published: 2023-06-05

摘要

嗜热链球菌(Streptococcus thermophilus)在发酵乳生产过程中应用广泛,通过对该菌种糖代谢相关功能基因的研究,可为优良工业菌种的筛选提供理论依据。该研究以27株分离自自然发酵乳的嗜热链球菌为试验菌株,利用碳水化合物鉴定生化试剂条,来对比分离株的糖类代谢情况,并通过基因组重测序和相关性分析,挖掘与菌株优良特性相关的基因。通过表型实验,将嗜热链球菌归纳为两组,其中一组仅可利用葡萄糖、乳糖、蔗糖,另一组还可以利用除上述糖类外的核糖、半乳糖、果糖、甘露糖、N-乙酰葡萄糖胺、苦杏仁苷、熊果苷、水杨苷、纤维二糖、麦芽糖、海藻糖、龙胆二糖等。两组间在多糖代谢基因和碳水化合物活性酶GT8差异显著(P<0.05);相关性分析结果显示,几丁质、N-乙酰葡萄糖氨基编码基因与菊粉、D-松三糖、木糖的利用显著正相关(P<0.05),淀粉的利用与碳水化合物活性酶家族GH13_14和CE2具有显著正相关(P<0.05)。研究通过分析嗜热链球菌中参与碳水化合物代谢的基因,发现部分糖代谢表型与基因间差异相匹配,为发酵乳菌株的开发和利用奠定理论基础。

本文引用格式

杜萍 , 孙志宏 , 赵洁 . 自然发酵乳中嗜热链球菌糖代谢特征与功能基因分析[J]. 食品与发酵工业, 2023 , 49(9) : 9 -15 . DOI: 10.13995/j.cnki.11-1802/ts.033642

Abstract

Streptococcus thermophilus is widely used in the production of fermented milk. The study on the functional genes related to sugar metabolism of S. thermophilus can provide theoretical basis for the screening of excellent industrial strains. In this study, 27 strains of S. thermophilus isolated from naturally fermented milk were used as test strains. Biological reagent strips were identified by carbohydrates to compare the carbohydrate metabolism of the isolates, and genes related to the excellent characteristics of the isolates were explored by genome resequencing and correlation analysis. By phenotypic experiment using S. thermophilus divided into two groups, one group can use glucose, lactose, sucrose, another group not only can use glucose, lactose, sucrose, still can use ribose, galactose, fructose and mannose, N-acetyl glucosamine, laetrile, arbutin, salicin, cellobiose, maltose, trehalose, gentiobiose. There were significant differences in polysaccharide metabolism gene and carbohydrate active enzyme GT8 between groups (P<0.05). Correlation analysis results showed that there was significant positive correlation between chitin and N-acetyl glucosamine encoding genes and inulin, D-melezitose and xylose utilization (P<0.05), and there was significant positive correlation between starch utilization and GH13_14 and CE2 of carbohydrate active enzyme family (P<0.05). By analyzing the genes involved in carbohydrate metabolism in S. thermophilus, we found that some phenotypes of carbohydrate metabolism matched with the differences between genes, which laid a theoretical foundation for the development and utilization of fermented milk strain.

参考文献

[1] 李鹏. 嗜热链球菌的功能性研究及其直投式发酵剂的开发应用[D].石家庄:河北科技大学, 2018.
LI P.Study on the functionality of Streptococcus thermophilus and the development and application of its DVS starter[D].Shijiazhuang:Hebei University of Science and Technology, 2018.
[2] 刘冬梅, 胡金双, 黄泳尧, 等.中国传统发酵乳中嗜热链球菌H2的培养及益生特性评价[J].华南理工大学学报(自然科学版), 2020, 48(9):133-140;148.
LIU D M, HU J S, HUANG Y Y, et al.Cultivation of Streptococcus thermophilus H2 and the evaluation on its prebiotic properties in Chinese traditional fermented milk[J].Journal of South China University of Technology (Natural Science Edition), 2020, 48(9):133-140;148.
[3] ZOU J, JIANG H, CHENG H, et al.Strategies for screening, purification and characterization of bacteriocins [J].International Journal of Biological Macromolecules, 2018, 117:781-789.
[4] 马立清, 张文羿, 孙天松.嗜热链球菌S4发酵乳代谢组学的研究[J].食品与发酵工业, 2021, 47(19):71-78.
MA L Q, ZHANG W Y, SUN T S.Metabolomics analysis of fermented milk with Streptococcus thermophilus S4[J].Food and Fermentation Industries, 2021, 47(19):71-78.
[5] 艾正文. 基于转录组学的Streptococcus thermophilus TF96中心碳代谢机制的研究[D].哈尔滨:东北农业大学, 2017.
AI Z W.Transcriptomics study on the mechanism of central carbon metabolism of Streptococcus thermophilus TF96[D].Harbin:Northeast Agricultural University, 2017.
[6] 张夙夙. 乳酸菌的乳糖/半乳糖代谢及其应用[D].济南:山东大学, 2020.
ZHANG S S.Lactose/galactose metabolism of lactic acid bacteria and its application[D].Jinan:Shandong University, 2020.
[7] 陆文伟. 全局转录调控因子CodY在嗜热链球菌中的调控机制研究[D].济南:山东大学, 2014.
LU W W.Study on the regulatory mechanism of global transcription regulator CodY in Streptococcus thermophilus[D].Jinan:Shandong University, 2014.
[8] 刘倩钰, 吴丽雯, 牛建军, 等.细菌磷酸转移酶系统(PTS)的组成与功能研究进展[J].微生物学通报, 2020, 47(7):2 266-2 277.
LIU Q Y, WU L W, NIU J J, et al.Research progress of the composition and function of bacterial phosphotransferase system[J].Microbiology China, 2020, 47(7):2 266-2 277.
[9] 季安营, 魏雪团.改造非磷酸转移酶葡萄糖转运途径强化解淀粉芽胞杆菌合成L-酪氨酸[J].食品与发酵工业, 2020, 46(15):27-31.
JI A Y, WEI X T.Engineering of the non-phosphotransferase glucose transport system for enhancing L-tyrosine production in Bacillus amyloliquefaciens[J].Food and Fermentation Industries, 2020, 46(15):27-31.
[10] ERKUS O, OKUKLU B, YENIDUNYA A F, et al.High genetic and phenotypic variability of Streptococcus thermophilus strains isolated from artisanal Yuruk yoghurts[J].LWT - Food Science and Technology, 2014, 58(2):348-354.
[11] MORANDI S, BRASCA M.Safety aspects, genetic diversity and technological characterisation of wild-type Streptococcus thermophilus strains isolated from north Italian traditional cheeses[J].Food Control, 2012, 23(1):203-209.
[12] WU C D, HUANG J, ZHOU R Q.Genomics of lactic acid bacteria:Current status and potential applications[J].Critical Reviews in Microbiology, 2017, 43(4):393-404.
[13] 赵洁.自然发酵乳中嗜热链球菌群体遗传学和功能基因组学研究[D].呼和浩特:内蒙古农业大学, 2018.
ZHAO J.Study on population genetics and functional genomics of Streptococcus thermophilus in naturally fermented milk[D].Hohhot:Inner Mongolia Agricultural University, 2018.
[14] 赵洁, 席晓霞, 张兴昌, 等.分子生物学法快速筛选具有优良产酸特性的嗜热链球菌[J].中国食品学报, 2018, 18(3):73-80.
ZHAO J, XI X X, ZHANG X C, et al.Rapid screening Streptococcus thermophilus strains with superior acid-producing character by molecular biology techniques[J].Journal of Chinese Institute of Food Science and Technology, 2018, 18(3):73-80.
[15] 安晓娜, 李伟程, 于洁, 等.比较基因组学分析不同来源罗伊氏乳杆菌基因多样性及生境适应性[J].微生物学报, 2020, 60(5):875-886.
AN X N, LI W C, YU J, et al.Comparative genomics analysis of genetic diversity and habitat adaptability of Lactobacillus reuteri from different sources[J].Acta Microbiologica Sinica, 2020, 60(5):875-886.
[16] AZIZ R K, BARTELS D, BEST A A, et al.The RAST Server:Rapid annotations using subsystems technology[J].BMC Genomics, 2008, 9:75.
[17] 董安利. 乳酸乳球菌乳酸亚种BL19的高密度培养研究[D].呼和浩特:内蒙古农业大学, 2019.
DONG A L.Study on high density culture of Lactococcus lactis subsp.lactis BL19[D].Hohhot:Inner Mongolia Agricultural University, 2019.
[18] SEEMANN T.Prokka:Rapid prokaryotic genome annotation[J].Bioinformatics, 2014, 30(14):2 068-2 069.
[19] PAGE A J, CUMMINS C A, HUNT M, et al.Roary:Rapid large-scale prokaryote pan genome analysis[J].Bioinformatics, 2015, 31(22):3 691-3 693.
[20] OVERBEEK R, OLSON R, PUSCH G D, et al.The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST)[J].Nucleic Acids Research, 2014, 42(D1):D206-D214.
[21] GASSER C, GARAULT P, CHERVAUX C, et al.Co-utilization of saccharides in mixtures:Moving toward a new understanding of carbon metabolism in Streptococcus thermophilus[J].Food Microbiology, 2022, 107:104080.
[22] 姚纲, 张健鹏, 胡红焱, 等.用API50CH系统鉴定9株产高光学纯度D-乳酸野生菌株[J].中国实用医药, 2014, 9(8):263-265.
YAO G, ZHANG J P, HU H Y, et al.Identification of 9 wild strains producing high optical purity D-lactic acid by API50CH system[J].China Practical Medicine, 2014, 9(8):263-265.
[23] 韩晓龙. 赭曲霉全基因组测序和功能注释及其重要次级代谢产物生物合成基因簇的预测[D].广州:南方医科大学, 2017.
HAN X L.Genome sequencing and functional annotation of Aspergillus ochraceus and prediction of its important secondary metabolite biosynthesis gene cluster[D].Guangzhou:Southern Medical University, 2017.
[24] MIZUGUCHI K, DEANE C M, BLUNDELL T L, et al.HOMSTRAD:A database of protein structure alignments for homologous families[J].Protein Science:a Publication of the Protein Society, 1998, 7(11):2 469-2 471.
[25] 伍涵宇, 丁彦琴, 牛春, 等.微生物生产N-乙酰氨基葡萄糖的进展、应用及展望[J].轻工科技, 2021, 37(2):4-8.
WU H Y, DING Y Q, NIU C, et al.Progress, application and prospect of microbial production of N-acetylglucosamine[J].Light Industry Science and Technology, 2021, 37(2):4-8.
[26] GOH Y J, GOIN C, O’FLAHERTY S, et al.Specialized adaptation of a lactic acid bacterium to the milk environment:The comparative genomics of Streptococcus thermophilus LMD-9[J].Microbial Cell Factories, 2011, 10(Suppl 1):S22.
[27] 周亮亮. 柑橘溃疡病生防菌Bacillus velezensis QC-J全基因组测序及比较基因组学分析[D].赣州:江西理工大学, 2021.
ZHOU L L.Genome sequencing and comparative genomic analysis of Bacillus velezensis QC-J strain, a biocontrol bacterium against Citrus canker[D].Ganzhou:Jiangxi University of Science and Technology, 2021.
文章导航

/