为提高大肠杆菌发酵乳清酸的产率和糖酸转化率,以大肠杆菌(Escherichia coli)Ora-6为供试菌株,在原有培养基的基础上,通过单因素试验及正交试验探究维生素B1、维生素B3、维生素B5、维生素B6、维生素B7、维生素B12几种关键B族维生素对菌体生长及产酸能力的影响,并确定最佳组合添加量为维生素B1 6.8 mg/L,维生素B3 4.8 mg/L,维生素B5 4 mg/L,维生素B6 3.4 mg/L,维生素B7 1.4 mg/L,维生素B12 4 mg/L。在此条件下,经5 L发酵罐验证对比,此时优化后的培养基菌体量(OD600)、乳清酸产量、糖酸转化率分别为134.32、121.41 g/L和25.73%,较原始培养基分别增长了13.16%、15.47%、12.96%。同时研究确定了B族维生素采取从10 h持续流加的发酵优化策略,使得5 L发酵罐发酵乳清酸最终菌体量和产量分别达到148.23、138.2 g/L,为工业化发酵生产乳清酸提供了参考依据。
To improve the production and sugar-acid conversion rate of Escherichia coli fermented orotic acid, E. coli Ora-6 was used as the test strain, this study investigated the effect of several key B vitamins of VB1, VB3, VB5, VB6, VB7 and VB12 on the biomass, orotic acid production ,and sugar-acid conversion rate based on the original medium. The best combination addition was VB1 6.8 mg/L, VB3 4.8 mg/L, VB5 4 mg/L, VB6 3.4 mg/L, VB7 1.4 mg/L, VB12 4 mg/L. Under these conditions, the verification test in 5 L fermenter showed that the optimized medium biomass (OD600), orotic acid production, and sugar-acid conversion rate were 134.32, 121.41 g/L and 25.73%, an increase of 13.16%, 15.47%, and 12.96% respectively over the original medium. In addition, this study determined that the B vitamins were continuously fed from the 10th hour to the fermentation optimization strategy. The final biomass and production of orotic acid fermented in the 5 L fermenter reached 148.23 and 138.2 g/L, respectively. This study provides some references for the industrial fermentation of orotic acid.
[1] LÖFFLER M, CARREY E A, ZAMEITAT E.Orotate (orotic acid):An essential and versatile molecule[J].Nucleosides, Nucleotides & Nucleic Acids, 2016, 35(10-12):566-577.
[2] CARVALHO N, COELHO E, GALES L, et al.Production of orotic acid by a Klura3Δ mutant of Kluyveromyces lactis[J].Journal of Bioscience and Bioengineering, 2016, 121(6):625-630.
[3] 佟臻, 韦阳, 高彦祥.关于CoQ10传递体系的研究进展[J].中国食品添加剂, 2018(10):201-210.
TONG Z, WEI Y, GAO Y X.Research progress on coenzyme Q10 delivery system[J].China Food Additives, 2018(10):201-210.
[4] 徐庆阳, 李长庚, 孙鹏杰.一种生产乳清酸的基因工程菌及其构建方法与应用:CN114774341A[P].2022-07-22.
[5] 郝柿田. 乳清酸合成工艺研究[D].天津:河北工业大学, 2019.
HAO S T.Study on synthesis technology of orotic acid[D].Tianjin:Hebei University of Technology, 2019.
[6] 张震, 熊海波, 徐庆阳.大肠杆菌高密度培养发酵L-色氨酸[J].食品与发酵工业, 2019, 45(23):15-20.
ZHANG Z, XIONG H B, XU Q Y. L-tryptophan fermentation by high cell density culture of Escherichia coli[J].Food and Fermentation Industries, 2019, 45(23):15-20.
[7] 孙鹏杰, 余子辰, 徐庆阳.B族维生素对枯草芽孢杆菌发酵生产腺苷的影响[J].中国酿造, 2022, 41(4):93-98.
SUN P J, YU Z C, XU Q Y.Effect of vitamin B on adenosine production by Bacillus subtilis fermentation[J].China Brewing, 2022, 41(4):93-98.
[8] 苏跃稳. L-苏氨酸基因工程菌的改造及发酵过程的优化[D].长春:吉林大学, 2017.
SU Y W.Modification of L-threonine genetically engineered bacteria and optimization of fermentation process[D].Changchun:Jilin University, 2017.
[9] CHEN Y Y, WANG L L, SHANG F, et al.Structural insight of the 5-(Hydroxyethyl)-methylthiazole kinase ThiM involving vitamin B1 biosynthetic pathway from the Klebsiella pneumoniae[J].Biochemical and Biophysical Research Communications, 2019, 518(3):513-518.
[10] LIAO Z P, SUO Y K, XUE C, et al.Improving the fermentation performance of Clostridium acetobutylicum ATCC 824 by strengthening the VB1 biosynthesis pathway[J].Applied Microbiology and Biotechnology, 2018, 102(18):8107-8119.
[11] GILLE A, BODOR E T, AHMED K, et al.Nicotinic acid:Pharmacological effects and mechanisms of action[J].Annual Review of Pharmacology and Toxicology, 2008, 48:79-106.
[12] AGLEDAL L, NIERE M, ZIEGLER M.The phosphate makes a difference:Cellular functions of NADP[J].Redox Report, 2010, 15(1):2-10.
[13] RIGOULET M, BOUCHEZ C L, PAUMARD P, et al.Cell energy metabolism:An update[J].Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2020, 1861(11):148276.
[14] NAVAS L E, CARNERO A.NAD+ metabolism, stemness, the immune response, and cancer[J].Signal Transduction and Targeted Therapy, 2021, 6(1):1-20.
[15] 程坤源, 陈岳明, 陈全英, 等.脯氨酸发酵培养基添加VB5的试验[J].发酵科技通讯, 2012, 41(1):8-9.
CHENG K Y, CHEN Y M, CHEN Q Y, et al.Experiment of adding VB5 to proline fermentation medium[J].Bulletin of Fermentation Science and Technology, 2012, 41(1):8-9.
[16] 娄秀平, 沈健增, 蔡宇杰, 等.维生素对大肠杆菌Escherichia coli.JN8产L-色氨酸的影响[J].食品与生物技术学报, 2013, 32(9):921-926.
LOU X P, SHEN J Z, CAI Y J, et al.Effect of vitamins on production of L-tryptophan in Escherichia coli JN8[J].Journal of Food Science and Biotechnology, 2013, 32(9):921-926.
[17] 杨延辉, 肖春玲.泛酸的功能和生物合成[J].生命的化学, 2008, 28(4):448-452.
YANG Y H, XIAO C L.The functions and biosynthesis of pantothenate[J].Chemistry of Life, 2008, 28(4):448-452.
[18] 朱圣庚,徐长法.生物化学[M].第四版.北京:高等教育出版社, 2020:497-498.
ZHU S G, XU C F.Biochemistry[M].Fourth edition.Beijing:Higher Education Press, 2020:497-498.
[19] 何俊锋. L-组氨酸产生菌的选育及其发酵条件优化[D].无锡:江南大学, 2006.
HE J F.Breeding of L-histidine producing strain and optimization of its fermentation conditions[D].Wuxi:Jiangnan University, 2006.
[20] 陈志超, 王金多, 徐庆阳.微量元素与生长因子对L-苯丙氨酸发酵的影响[J].食品与发酵工业, 2022, 48(8):82-89.
CHEN Z C, WANG J D, XU Q Y.Effects of trace elements and growth factors on L-phenylalanine fermentation[J].Food and Fermentation Industries, 2022, 48(8):82-89.
[21] 熊海波, 梅漫莉, 徐庆阳.当量生物素控制对谷氨酸棒杆菌发酵产L-异亮氨酸的影响[J].中国调味品, 2020, 45(5):27-32.
XIONG H B, MEI M L, XU Q Y.Effects of equivalent biotin control on L-isoleucine production by Corynebacterium glutamate fermentation[J].China Condiment, 2020, 45(5):27-32.
[22] LIU J, LIU Y F, WU J, et al.Metabolic profiling analysis of the vitamin B12 producer Propionibacterium freudenreichii[J].MicrobiologyOpen, 2021, 10(3):e1199.
[23] LI D, FANG H, GAI Y M, et al.Metabolic engineering and optimization of the fermentation medium for vitamin B12 production in Escherichia coli[J].Bioprocess and Biosystems Engineering, 2020, 43(10):1735-1745.