综述与专题评论

以天然多糖为基质构建口服蛋白质纳米粒子的研究进展

  • 蔡泓滢 ,
  • 太敏瑞 ,
  • 李瑞 ,
  • 宋兵兵 ,
  • 陈建平 ,
  • 刘晓菲 ,
  • 钟赛意
展开
  • 1(广东海洋大学 食品科技学院,广东省海洋生物制品工程实验室,广东省海洋食品工程技术研究中心,广东省水产品加工与安全重点实验室,广东省亚热带果蔬加工科技创新中心,广东 湛江,524088)
    2(海洋食品精深加工关键技术省部共建协同创新中心(大连工业大学),辽宁 大连,116034)
第一作者:硕士研究生(李瑞副研究员为通信作者,E-mail:lirui@gdou.edu.cn)

收稿日期: 2022-07-20

  修回日期: 2022-08-11

  网络出版日期: 2023-08-31

基金资助

广东省重点领域研发计划资助项目(2020B1111030004);广东省自然科学基金面上项目(2021A1515010868);广东省普通高校特色创新项目(自然科学)(2020KTSCX051);广东省普通高校创新团队项目(2021KCXTD021);广东海洋大学科研启动费资助项目(R20078)

A review of oral protein nanoparticles constructed by natural polysaccharides

  • CAI Hongying ,
  • TAI Minrui ,
  • LI Rui ,
  • SONG Bingbing ,
  • CHEN Jianping ,
  • LIU Xiaofei ,
  • ZHONG Saiyi
Expand
  • 1(College of Food Science and Technology of Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Sub-tropical Fruit and vegetable Processing Technology Innovation Center, Zhanjiang 524088, China)
    2(Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China)

Received date: 2022-07-20

  Revised date: 2022-08-11

  Online published: 2023-08-31

摘要

蛋白质和多肽等大分子物质在口服过程中易被消化道中的蛋白酶分解,许多学者设想通过制备纳米递送载体包载大分子蛋白质以提高其生物利用度。天然多糖,如壳聚糖、淀粉等是来自于植物、动物、微生物等的大分子物质,具有无毒、化学结构可修饰、良好的血液相容性和生物降解性等优点,与活细胞之间具有广泛相互作用,并能够延长蛋白质类活性物质在胃肠道中的滞留时间,有效提高其生物利用度。因此,天然多糖作为基质在口服蛋白质纳米载体的制备和应用中具有不可替代的优势。该文主要介绍了以天然多糖为基质的口服蛋白质纳米粒子的制备方法、影响纳米粒子稳定性的主要因素、常用于制备纳米载体的天然多糖及其应用以及天然多糖与其他载体相比的优势,旨在为口服大分子蛋白质类生物活性物质递送载体的开发提供理论依据。

本文引用格式

蔡泓滢 , 太敏瑞 , 李瑞 , 宋兵兵 , 陈建平 , 刘晓菲 , 钟赛意 . 以天然多糖为基质构建口服蛋白质纳米粒子的研究进展[J]. 食品与发酵工业, 2023 , 49(15) : 336 -343 . DOI: 10.13995/j.cnki.11-1802/ts.033046

Abstract

The macromolecules such as proteins and peptides are easily decomposed by protease in the digestive tract, many scholars encapsulate protein by preparing nano-delivery systems to improve the bioavailability of proteins. Natural polysaccharides such as chitosan and starch are macromolecules derived from natural sources, such as plants, microorganisms, and animals. Natural polysaccharides have the advantages of non-toxicity, chemical structure modifiability, and good blood compatibility and biodegradability. They have extensive interactions with living cells, can prolong the resistance time of protein in the gastrointestinal tract, and effectively improve its bioavailability. Therefore, natural polysaccharides as substrates have irreplaceable advantages in the preparation and application of oral protein nano-carrier. This paper mainly introduced the preparation methods of polysaccharide-based oral protein nanoparticles, the main factors affecting the stability of nanoparticles, the commonly used natural polysaccharides for nano-carrier preparation, and their unique advantages compared with other carriers. This paper aimed to provide a theoretical basis for the development of oral delivery carriers of macromolecular protein bioactive substances.

参考文献

[1] XIAO Y F, TANG Z M, WANG J Q, et al.Oral insulin delivery platforms:Strategies to address the biological barriers[J].Angewandte Chemie International Edition, 2020, 59(45):19787-19795.
[2] HAN Y, GAO Z G, CHEN L Q, et al.Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins[J].Acta Pharmaceutica Sinica B, 2019, 9(5):902-922.
[3] SONAJE K, CHUANG E Y, LIN K J, et al.Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan:Microscopic, ultrastructural, and computed-tomographic observations[J].Molecular Pharmaceutics, 2012, 9(5):1271-1279.
[4] 太敏瑞, 蔡泓滢, 李瑞, 等.多糖-蛋白质复合水凝胶研究进展[J].食品与发酵工业, 2022, 48(3):291-297.
TAI M R, CAI H Y, LI R, et al.Research progress of polysaccharide-protein composite hydrogels[J].Food and Fermentation Industries, 2022, 48(3):291-297.
[5] TOORISAKA E, HASHIDA M, KAMIYA N, et al.An enteric-coated dry emulsion formulation for oral insulin delivery[J].Journal of Controlled Release, 2005, 107(1):91-96.
[6] LI B, LI X, CHU X D, et al.Micro-ecology restoration of colonic inflammation by in-situ oral delivery of antibody-laden hydrogel microcapsules[J].Bioactive Materials, 2022, 15:305-315.
[7] JÖNSSON M, ALLAHGHOLI L, SARDARI R R R, et al.Extraction and modification of macroalgal polysaccharides for current and next-generation applications[J].Molecules, 2020, 25(4):930.
[8] FANG L, LIN H, WU Z F, et al.In vitro/vivo evaluation of novel mitochondrial targeting charge-reversal polysaccharide-based antitumor nanoparticle[J].Carbohydrate Polymers, 2020, 234:115930.
[9] HASSANI L N, HENDRA F, BOUCHEMAL K.Auto-associative amphiphilic polysaccharides as drug delivery systems[J].Drug Discovery Today, 2012, 17(11-12):608-614.
[10] ZHANG L, PAN J F, DONG S B, et al.The application of polysaccharide-based nanogels in peptides/proteins and anticancer drugs delivery[J].Journal of Drug Targeting, 2017, 25(8):673-684.
[11] PREETHI G U, UNNIKRISHNAN B S, SREEKUTTY J, et al.Semi-interpenetrating nanosilver doped polysaccharide hydrogel scaffolds for cutaneous wound healing[J].International Journal of Biological Macromolecules, 2020, 142:712-723.
[12] LIU L, YAN Y J, NI D N, et al.TAT-functionalized PEI-grafting rice bran polysaccharides for safe and efficient gene delivery[J].International Journal of Biological Macromolecules, 2020, 146:1076-1086.
[13] ZHANG J X, ZHAN P, TIAN H L.Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment:A review[J].International Journal of Biological Macromolecules, 2021, 182:115-128.
[14] QUIÑONES J P, PENICHE H, PENICHE C.Chitosan based self-assembled nanoparticles in drug delivery[J].Polymers, 2018, 10(3):235.
[15] DU Q, CHEN J Q, YAN G J, et al.Comparison of different aliphatic acid grafted N-trimethyl chitosan surface-modified nanostructured lipid carriers for improved oral kaempferol delivery[J].International Journal of Pharmaceutics, 2019, 568:118506.
[16] LV X J, ZHANG W C, LIU Y N, et al.Hygroscopicity modulation of hydrogels based on carboxymethyl chitosan/Alginate polyelectrolyte complexes and its application as pH-sensitive delivery system[J].Carbohydrate Polymers, 2018, 198:86-93.
[17] YOSHIDA K, HASEBE Y, TAKAHASHI S, et al.Layer-by-layer deposited nano- and micro-assemblies for insulin delivery:A review[J].Materials Science and Engineering:C, 2014, 34:384-392.
[18] ZHANG Y P, CHI C D, HUANG X Y, et al.Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract[J].Carbohydrate Polymers, 2017, 171:242-251.
[19] VONGCHAN P, WUTTI-IN Y, SAJOMSANG W, et al.N, N, N-Trimethyl chitosan nanoparticles for the delivery of monoclonal antibodies against hepatocellular carcinoma cells[J].Carbohydrate Polymers, 2011, 85(1):215-220.
[20] CHUNG Y I, KIM J C, KIM Y H, et al.The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting[J].Journal of Controlled Release, 2010, 143(3):374-382.
[21] SUNDAR S, MARIAPPAN R, PIRAMAN S.Synthesis and characterization of amine modified magnetite nanoparticles as carriers of curcumin-anticancer drug[J].Powder Technology, 2014, 266:321-328.
[22] SAHOO S, TOH S L, GOH J C H.A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells[J].Biomaterials, 2010, 31(11):2990-2998.
[23] CHENG S L, ZHANG Y P, CHA R T, et al.Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties[J].Nanoscale, 2016, 8(2):973-978.
[24] MEZA B E, PERALTA J M, ZORRILLA S E.Rheological properties of a commercial food glaze material and their effect on the film thickness obtained by dip coating[J].Journal of Food Process Engineering, 2015, 38(5):510-516.
[25] GABER M, MABROUK M T, FREAG M S, et al.Protein-polysaccharide nanohybrids:Hybridization techniques and drug delivery applications[J].European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133:42-62.
[26] FARALLI A, SHEKARFOROUSH E, AJALLOUEIAN F, et al.In vitro permeability enhancement of curcumin across Caco-2 cells monolayers using electrospun xanthan-chitosan nanofibers[J].Carbohydrate Polymers, 2019, 206:38-47.
[27] 王华琼. 多肽和蛋白质的胃肠道淋巴吸收 [J].国外医学、药学分册, 1992(3):185.
WANG H Q.Gastrointestinal lymph aspiration with polyfoliation and protein [J].Journal of International Pharmaceutical Research, 1992(3):185.
[28] CHOI Y H, KIM S G, LEE M G.Dose-independent pharmacokinetics of metformin in rats:Hepatic and gastrointestinal first-pass effects[J].Journal of Pharmaceutical Sciences, 2006, 95(11):2543-2552.
[29] REHMANI S, DIXON J E.Oral delivery of anti-diabetes therapeutics using cell penetrating and transcytosing peptide strategies[J].Peptides, 2018, 100:24-35.
[30] DESAI M P, LABHASETWAR V, AMIDON G L, et al.Gastrointestinal uptake of biodegradable microparticles:Effect of particle size[J].Pharmaceutical Research, 1996, 13(12):1838-1845.
[31] SUN W J, GAO J, FAN R R, et al.The effect of particle size on the absorption of cyclosporin A nanosuspensions[J].International Journal of Nanomedicine, 2022, 17:1741-1755.
[32] PARK J H, SARAVANAKUMAR G, KIM K, et al.Targeted delivery of low molecular drugs using chitosan and its derivatives[J].Advanced Drug Delivery Reviews, 2010, 62(1):28-41.
[33] CHANG T Y, CHEN C C, CHENG K M, et al.Trimethyl chitosan-capped silver nanoparticles with positive surface charge:Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii[J].Colloids and Surfaces B:Biointerfaces, 2017, 155:61-70.
[34] LI J M, MAO J, TANG J, et al.Surface spermidine functionalized PEGylated poly(lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery[J].RSC Advances, 2017, 7(37):22954-22963.
[35] SUSA M, IYER A K, RYU K, et al.Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma[J].PLoS One, 2010, 5(5):e10764.
[36] YEH T H, HSU L W, TSENG M T, et al.Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening[J].Biomaterials, 2011, 32(26):6164-6173.
[37] KUMARI A, YADAV S K, YADAV S C.Biodegradable polymeric nanoparticles based drug delivery systems[J].Colloids and Surfaces B:Biointerfaces, 2010, 75(1):1-18.
[38] YAO X D, BUNT C, CORNISH J, et al.Preparation, optimization and characterization of bovine lactoferrin-loaded liposomes and solid lipid particles modified by hydrophilic polymers using factorial design[J].Chemical Biology & Drug Design, 2014, 83(5):560-575.
[39] JØRGENSEN J R, THAMDRUP L H E, KAMGUYAN K, et al.Design of a self-unfolding delivery concept for oral administration of macromolecules[J].Journal of Controlled Release, 2021, 329:948-954.
[40] LING K, WU H X, NEISH A S, et al.Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles[J].Journal of Controlled Release, 2019, 295:174-186.
[41] BERGER J, REIST M, MAYER J M, et al.Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications[J].European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57(1):35-52.
[42] AVADI M R, ERFAN M, SADEGHI A M M, et al.Synthesis and characterization of N-diethyl methyl chitosan[J].Iranian Polymer Journal (English),2004,13(5):431-436.
[43] HE C B, CUI F Y, YIN L C, et al.A polymeric composite carrier for oral delivery of peptide drugs:Bilaminated hydrogel film loaded with nanoparticles[J].European Polymer Journal, 2009, 45(2):368-376.
[44] LI W Q, ZHU X Q, ZHOU X M, et al.An orally available PD-1/PD-L1 blocking peptide OPBP-1-loaded trimethyl chitosan hydrogel for cancer immunotherapy[J].Journal of Controlled Release, 2021, 334:376-388.
[45] QIN Y M.Absorption characteristics of alginate wound dressings[J].Journal of Applied Polymer Science, 2004, 91(2):953-957.
[46] HU Q B, LUO Y C.Recent advances of polysaccharide-based nanoparticles for oral insulin delivery[J].International Journal of Biological Macromolecules, 2018, 120:775-782.
[47] FONTE P, ARAÚJO F, SILVA C, et al.Polymer-based nanoparticles for oral insulin delivery:Revisited approaches[J].Biotechnology Advances, 2015, 33(6):1342-1354.
[48] PARK R M, NGUYEN N H T, LEE S M, et al.Alginate oligosaccharides can maintain activities of lysosomes under low pH condition[J].Scientific Reports, 2021, 11:11504.
[49] CHEN T T, LI S Y, ZHU W T, et al.Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin[J].Journal of Microencapsulation, 2019, 36(1):96-107.
[50] 王雪毓. 淀粉基水分散体薄膜包衣材料及其释放行为的研究[D].广州:华南理工大学,2011.
WANG X Y.Starch-based Aqueous Dispersion Film Coating Material and its Releasing Behaviors[D].Guangzhou:South China University of Technology, 2011.
[51] DE OLIVEIRA CARDOSO V M, KIRALY V T R, BONI F I, et al.Rational design of nanocarriers based on gellan gum/retrograded starch exploiting polyelectrolyte complexation and ionic cross-linking processes:A potential technological platform for oral delivery of bevacizumab[J].Journal of Drug Delivery Science and Technology, 2021, 66:102765.
[52] 姬娜. 淀粉基口服胰岛素纳米复合物的制备及性能研究[D].无锡:江南大学, 2019.
JI N.Facribaction and characterization of strach-based nanocomposites for oral insulin delivery[D].Wuxi:Jiangnan University, 2019.
[53] SONG Y N, SHI Y N, ZHANG L P, et al.Oral delivery system for low molecular weight protamine-dextran-poly(lactic-co-glycolic acid) carrying exenatide to overcome the mucus barrier and improve intestinal targeting efficiency[J].Nanomedicine, 2019, 14(8):989-1009.
[54] KIM Y, KIM Y S, YOO S H, et al.Molecular structural differences between low methoxy pectins induced by pectin methyl esterase II:Effects on texture, release and perception of aroma in gels of similar modulus of elasticity[J].Food Chemistry, 2014, 145:950-955.
[55] DERAKHSHANKHAH H, IZADI Z, ALAEI L, et al.Colon cancer and specific ways to deliver drugs to the large intestine[J].Anti-Cancer Agents in Medicinal Chemistry, 2017, 17(10):1317-1327.
[56] IZADI Z, DIVSALAR A, SABOURY A A, et al.β-lactoglobulin-pectin nanoparticle-based oral drug delivery system for potential treatment of colon cancer[J].Chemical Biology & Drug Design, 2016, 88(2):209-216.
[57] DE OLIVEIRA CARDOSO V M, GREMIÃO M P D, CURY B S F.Mucin-polysaccharide interactions:A rheological approach to evaluate the effect of pH on the mucoadhesive properties[J].International Journal of Biological Macromolecules, 2020, 149:234-245.
[58] TOZAKI H, KOMOIKE J, TADA C K, et al.Chitosan capsules for colon-specific drug delivery:Improvement of insulin absorption from the rat colon[J].Journal of Pharmaceutical Sciences, 1997, 86(9):1016-1021.
[59] SABRA R, BILLA N, ROBERTS C J.An augmented delivery of the anticancer agent, curcumin, to the colon[J].Reactive and Functional Polymers, 2018, 123:54-60.
[60] WANG M, HAO W S, ZHANG L, et al.Lipid-polymer nano core-shell type hybrid system for colon specific drug delivery[J].Journal of Drug Delivery Science and Technology, 2021, 63:102540.
[61] KIANI M, MIRZAZADEH TEKIE F S, DINARVAND M, et al.Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense:in vitro stability and efficiency study[J].Materials Science and Engineering:C, 2016, 62:771-778.
[62] TOZAKI H, ODORIBA T, OKADA N, et al.Chitosan capsules for colon-specific drug delivery:Enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats[J].Journal of Controlled Release, 2002, 82(1):51-61.
文章导航

/